Catalan number
(Mylib/Combinatorics/catalan_number.cpp)
Operations
-
catalan_number<ft>(int n) -> T
- $c_0 = 1, c_{n+1} = \sum_{i=0}^n c_i * c_{n-i}$ を満たす数列の第n項を返す。
Requirements
Notes
Problems
References
Depends on
Verified with
Code
#pragma once
#include <cstdint>
#include "Mylib/Combinatorics/factorial_table.cpp"
namespace haar_lib {
template <const auto &ft>
auto catalan_number(int64_t n) {
return ft.C(2 * n, n) - ft.C(2 * n, n - 1);
}
} // namespace haar_lib
#line 2 "Mylib/Combinatorics/catalan_number.cpp"
#include <cstdint>
#line 2 "Mylib/Combinatorics/factorial_table.cpp"
#include <cassert>
#line 4 "Mylib/Combinatorics/factorial_table.cpp"
#include <vector>
namespace haar_lib {
template <typename T>
class factorial_table {
public:
using value_type = T;
private:
int N_;
std::vector<T> f_table_, if_table_;
public:
factorial_table() {}
factorial_table(int N) : N_(N) {
f_table_.assign(N + 1, 1);
if_table_.assign(N + 1, 1);
for (int i = 1; i <= N; ++i) {
f_table_[i] = f_table_[i - 1] * i;
}
if_table_[N] = f_table_[N].inv();
for (int i = N; --i >= 0;) {
if_table_[i] = if_table_[i + 1] * (i + 1);
}
}
T factorial(int64_t i) const {
assert(0 <= i and i <= N_);
return f_table_[i];
}
T inv_factorial(int64_t i) const {
assert(0 <= i and i <= N_);
return if_table_[i];
}
T P(int64_t n, int64_t k) const {
if (n < k or n < 0 or k < 0) return 0;
return factorial(n) * inv_factorial(n - k);
}
T C(int64_t n, int64_t k) const {
if (n < k or n < 0 or k < 0) return 0;
return P(n, k) * inv_factorial(k);
}
T H(int64_t n, int64_t k) const {
if (n == 0 and k == 0) return 1;
return C(n + k - 1, k);
}
};
} // namespace haar_lib
#line 4 "Mylib/Combinatorics/catalan_number.cpp"
namespace haar_lib {
template <const auto &ft>
auto catalan_number(int64_t n) {
return ft.C(2 * n, n) - ft.C(2 * n, n - 1);
}
} // namespace haar_lib
Back to top page