#pragma once #include <algorithm> #include <cassert> #include <utility> #include <vector> #include "Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <typename T, int PRIM_ROOT, int MAX_SIZE> class number_theoretic_transform { public: using value_type = T; constexpr static int primitive_root = PRIM_ROOT; constexpr static int max_size = MAX_SIZE; private: const int MAX_POWER_; std::vector<T> BASE_, INV_BASE_; public: number_theoretic_transform() : MAX_POWER_(__builtin_ctz(MAX_SIZE)), BASE_(MAX_POWER_ + 1), INV_BASE_(MAX_POWER_ + 1) { static_assert((MAX_SIZE & (MAX_SIZE - 1)) == 0, "MAX_SIZE must be power of 2."); static_assert((T::mod() - 1) % MAX_SIZE == 0); T t = T::pow(PRIM_ROOT, (T::mod() - 1) >> (MAX_POWER_ + 2)); T s = t.inv(); for (int i = MAX_POWER_; --i >= 0;) { t *= t; s *= s; BASE_[i] = -t; INV_BASE_[i] = -s; } } void run(std::vector<T> &f, bool INVERSE = false) const { const int n = f.size(); assert((n & (n - 1)) == 0 and n <= MAX_SIZE); // データ数は2の冪乗個 if (INVERSE) { for (int b = 1; b < n; b <<= 1) { T w = 1; for (int j = 0, k = 1; j < n; j += 2 * b, ++k) { for (int i = 0; i < b; ++i) { const auto s = f[i + j]; const auto t = f[i + j + b]; f[i + j] = s + t; f[i + j + b] = (s - t) * w; } w *= INV_BASE_[__builtin_ctz(k)]; } } const T t = T::inv(n); for (auto &x : f) x *= t; } else { for (int b = n >> 1; b; b >>= 1) { T w = 1; for (int j = 0, k = 1; j < n; j += 2 * b, ++k) { for (int i = 0; i < b; ++i) { const auto s = f[i + j]; const auto t = f[i + j + b] * w; f[i + j] = s + t; f[i + j + b] = s - t; } w *= BASE_[__builtin_ctz(k)]; } } } } template <typename U> std::vector<T> convolve(std::vector<U> f, std::vector<U> g, bool is_same = false) const { const int m = f.size() + g.size() - 1; int n = 1; while (n < m) n *= 2; std::vector<T> f2(n); for (int i = 0; i < (int) f.size(); ++i) f2[i] = (int64_t) f[i]; run(f2); if (is_same) { for (int i = 0; i < n; ++i) f2[i] *= f2[i]; run(f2, true); } else { std::vector<T> g2(n); for (int i = 0; i < (int) g.size(); ++i) g2[i] = (int64_t) g[i]; run(g2); for (int i = 0; i < n; ++i) f2[i] *= g2[i]; run(f2, true); } return f2; } template <typename U> std::vector<T> operator()(std::vector<U> f, std::vector<U> g, bool is_same = false) const { return convolve(f, g, is_same); } }; template <typename T> std::vector<T> convolve_general_mod(std::vector<T> f, std::vector<T> g) { static constexpr int M1 = 167772161, P1 = 3; static constexpr int M2 = 469762049, P2 = 3; static constexpr int M3 = 1224736769, P3 = 3; auto res1 = number_theoretic_transform<modint<M1>, P1, 1 << 20>().convolve(f, g); auto res2 = number_theoretic_transform<modint<M2>, P2, 1 << 20>().convolve(f, g); auto res3 = number_theoretic_transform<modint<M3>, P3, 1 << 20>().convolve(f, g); const int n = res1.size(); std::vector<T> ret(n); const int64_t M12 = (int64_t) modint<M2>::inv(M1); const int64_t M13 = (int64_t) modint<M3>::inv(M1); const int64_t M23 = (int64_t) modint<M3>::inv(M2); for (int i = 0; i < n; ++i) { const int64_t r[3] = {(int64_t) res1[i], (int64_t) res2[i], (int64_t) res3[i]}; const int64_t t0 = r[0] % M1; const int64_t t1 = (r[1] - t0 + M2) * M12 % M2; const int64_t t2 = ((r[2] - t0 + M3) * M13 % M3 - t1 + M3) * M23 % M3; ret[i] = T(t0) + T(t1) * M1 + T(t2) * M1 * M2; } return ret; } } // namespace haar_lib
#line 2 "Mylib/Convolution/ntt_convolution.cpp" #include <algorithm> #include <cassert> #include <utility> #include <vector> #line 2 "Mylib/Number/Mint/mint.cpp" #include <iostream> #line 4 "Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod() { return M; } constexpr modint() : val_(0) {} constexpr modint(int64_t n) { if (n >= M) val_ = n % M; else if (n < 0) val_ = n % M + M; else val_ = n; } constexpr auto &operator=(const modint &a) { val_ = a.val_; return *this; } constexpr auto &operator+=(const modint &a) { if (val_ + a.val_ >= M) val_ = (uint64_t) val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto &operator-=(const modint &a) { if (val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto &operator*=(const modint &a) { val_ = (uint64_t) val_ * a.val_ % M; return *this; } constexpr auto &operator/=(const modint &a) { val_ = (uint64_t) val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const { return modint(*this) += a; } constexpr auto operator-(const modint &a) const { return modint(*this) -= a; } constexpr auto operator*(const modint &a) const { return modint(*this) *= a; } constexpr auto operator/(const modint &a) const { return modint(*this) /= a; } constexpr bool operator==(const modint &a) const { return val_ == a.val_; } constexpr bool operator!=(const modint &a) const { return val_ != a.val_; } constexpr auto &operator++() { *this += 1; return *this; } constexpr auto &operator--() { *this -= 1; return *this; } constexpr auto operator++(int) { auto t = *this; *this += 1; return t; } constexpr auto operator--(int) { auto t = *this; *this -= 1; return t; } constexpr static modint pow(int64_t n, int64_t p) { if (p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for (; p; (e *= e) %= M, p >>= 1) if (p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a) { int64_t b = M, u = 1, v = 0; while (b) { int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if (u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); } constexpr auto pow(int64_t p) const { return pow(val_, p); } constexpr auto inv() const { return inv(val_); } friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); } friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; } friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; } friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; } friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; } friend std::istream &operator>>(std::istream &s, modint &a) { s >> a.val_; return s; } friend std::ostream &operator<<(std::ostream &s, const modint &a) { s << a.val_; return s; } template <int N> static auto div() { static auto value = inv(N); return value; } explicit operator int32_t() const noexcept { return val_; } explicit operator int64_t() const noexcept { return val_; } }; } // namespace haar_lib #line 7 "Mylib/Convolution/ntt_convolution.cpp" namespace haar_lib { template <typename T, int PRIM_ROOT, int MAX_SIZE> class number_theoretic_transform { public: using value_type = T; constexpr static int primitive_root = PRIM_ROOT; constexpr static int max_size = MAX_SIZE; private: const int MAX_POWER_; std::vector<T> BASE_, INV_BASE_; public: number_theoretic_transform() : MAX_POWER_(__builtin_ctz(MAX_SIZE)), BASE_(MAX_POWER_ + 1), INV_BASE_(MAX_POWER_ + 1) { static_assert((MAX_SIZE & (MAX_SIZE - 1)) == 0, "MAX_SIZE must be power of 2."); static_assert((T::mod() - 1) % MAX_SIZE == 0); T t = T::pow(PRIM_ROOT, (T::mod() - 1) >> (MAX_POWER_ + 2)); T s = t.inv(); for (int i = MAX_POWER_; --i >= 0;) { t *= t; s *= s; BASE_[i] = -t; INV_BASE_[i] = -s; } } void run(std::vector<T> &f, bool INVERSE = false) const { const int n = f.size(); assert((n & (n - 1)) == 0 and n <= MAX_SIZE); // データ数は2の冪乗個 if (INVERSE) { for (int b = 1; b < n; b <<= 1) { T w = 1; for (int j = 0, k = 1; j < n; j += 2 * b, ++k) { for (int i = 0; i < b; ++i) { const auto s = f[i + j]; const auto t = f[i + j + b]; f[i + j] = s + t; f[i + j + b] = (s - t) * w; } w *= INV_BASE_[__builtin_ctz(k)]; } } const T t = T::inv(n); for (auto &x : f) x *= t; } else { for (int b = n >> 1; b; b >>= 1) { T w = 1; for (int j = 0, k = 1; j < n; j += 2 * b, ++k) { for (int i = 0; i < b; ++i) { const auto s = f[i + j]; const auto t = f[i + j + b] * w; f[i + j] = s + t; f[i + j + b] = s - t; } w *= BASE_[__builtin_ctz(k)]; } } } } template <typename U> std::vector<T> convolve(std::vector<U> f, std::vector<U> g, bool is_same = false) const { const int m = f.size() + g.size() - 1; int n = 1; while (n < m) n *= 2; std::vector<T> f2(n); for (int i = 0; i < (int) f.size(); ++i) f2[i] = (int64_t) f[i]; run(f2); if (is_same) { for (int i = 0; i < n; ++i) f2[i] *= f2[i]; run(f2, true); } else { std::vector<T> g2(n); for (int i = 0; i < (int) g.size(); ++i) g2[i] = (int64_t) g[i]; run(g2); for (int i = 0; i < n; ++i) f2[i] *= g2[i]; run(f2, true); } return f2; } template <typename U> std::vector<T> operator()(std::vector<U> f, std::vector<U> g, bool is_same = false) const { return convolve(f, g, is_same); } }; template <typename T> std::vector<T> convolve_general_mod(std::vector<T> f, std::vector<T> g) { static constexpr int M1 = 167772161, P1 = 3; static constexpr int M2 = 469762049, P2 = 3; static constexpr int M3 = 1224736769, P3 = 3; auto res1 = number_theoretic_transform<modint<M1>, P1, 1 << 20>().convolve(f, g); auto res2 = number_theoretic_transform<modint<M2>, P2, 1 << 20>().convolve(f, g); auto res3 = number_theoretic_transform<modint<M3>, P3, 1 << 20>().convolve(f, g); const int n = res1.size(); std::vector<T> ret(n); const int64_t M12 = (int64_t) modint<M2>::inv(M1); const int64_t M13 = (int64_t) modint<M3>::inv(M1); const int64_t M23 = (int64_t) modint<M3>::inv(M2); for (int i = 0; i < n; ++i) { const int64_t r[3] = {(int64_t) res1[i], (int64_t) res2[i], (int64_t) res3[i]}; const int64_t t0 = r[0] % M1; const int64_t t1 = (r[1] - t0 + M2) * M12 % M2; const int64_t t2 = ((r[2] - t0 + M3) * M13 % M3 - t1 + M3) * M23 % M3; ret[i] = T(t0) + T(t1) * M1 + T(t2) * M1 * M2; } return ret; } } // namespace haar_lib