#pragma once #include "Mylib/DataStructure/FenwickTree/fenwick_tree.cpp" #include <algorithm> #include <numeric> #include <vector> namespace haar_lib { template <typename AbelianGroup> class fenwick_tree_on_fenwick_tree { public: using value_type = typename AbelianGroup::value_type; private: AbelianGroup G_; int N_ = 0; std::vector<int64_t> xs_, ys_; std::vector<int> c_xs_; std::vector<std::vector<int>> c_ys_; int x_size_; std::vector<fenwick_tree<AbelianGroup>> segs_; public: fenwick_tree_on_fenwick_tree() {} void add(int64_t x, int64_t y) { xs_.push_back(x); ys_.push_back(y); ++N_; } void build() { c_xs_.insert(c_xs_.end(), xs_.begin(), xs_.end()); std::sort(c_xs_.begin(), c_xs_.end()); c_xs_.erase(std::unique(c_xs_.begin(), c_xs_.end()), c_xs_.end()); x_size_ = c_xs_.size(); c_ys_.resize(x_size_ + 1); segs_.resize(x_size_ + 1); std::vector<int> ord(N_); std::iota(ord.begin(), ord.end(), 0); std::sort(ord.begin(), ord.end(), [&](int i, int j) { return ys_[i] < ys_[j]; }); for (auto i : ord) { int x = std::lower_bound(c_xs_.begin(), c_xs_.end(), xs_[i]) - c_xs_.begin(); for (x += 1; x <= x_size_; x += x & (-x)) { c_ys_[x].emplace_back(ys_[i]); } } for (int i = 1; i <= x_size_; ++i) { auto &a = c_ys_[i]; a.erase(std::unique(a.begin(), a.end()), a.end()); segs_[i] = fenwick_tree<AbelianGroup>(c_ys_[i].size()); } } void update(std::pair<int, int> p, const value_type &val) { const auto [x, y] = p; int i = std::lower_bound(c_xs_.begin(), c_xs_.end(), x) - c_xs_.begin(); for (i += 1; i <= x_size_; i += i & (-i)) { int j = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y) - c_ys_[i].begin(); segs_[i].update(j, val); } } private: value_type get(int i, int64_t y1, int64_t y2) const { value_type ret = G_(); for (; i > 0; i -= i & (-i)) { int l = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y1) - c_ys_[i].begin(); int r = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y2) - c_ys_[i].begin(); ret = G_(ret, segs_[i].fold(l, r)); } return ret; } public: // [x1, x2), [y1, y2) value_type fold(std::pair<int64_t, int64_t> p1, std::pair<int64_t, int64_t> p2) const { const auto [x1, y1] = p1; const auto [x2, y2] = p2; int l = std::lower_bound(c_xs_.begin(), c_xs_.end(), x1) - c_xs_.begin(); int r = std::lower_bound(c_xs_.begin(), c_xs_.end(), x2) - c_xs_.begin(); return G_(get(r, y1, y2), G_.inv(get(l, y1, y2))); } }; } // namespace haar_lib
#line 2 "Mylib/DataStructure/FenwickTree/fenwick_tree.cpp" #include <cassert> #include <vector> namespace haar_lib { template <typename AbelianGroup> class fenwick_tree { public: using value_type = typename AbelianGroup::value_type; private: AbelianGroup G_; int size_; std::vector<value_type> data_; public: fenwick_tree() {} fenwick_tree(int size) : size_(size), data_(size + 1, G_()) {} void update(int i, const value_type &val) { assert(0 <= i and i < size_); i += 1; // 1-index while (i <= size_) { data_[i] = G_(data_[i], val); i += i & (-i); } } value_type fold(int i) const { // [0, i) assert(0 <= i and i <= size_); value_type ret = G_(); while (i > 0) { ret = G_(ret, data_[i]); i -= i & (-i); } return ret; } value_type fold(int l, int r) const { // [l, r) assert(0 <= l and l <= r and r <= size_); return G_(fold(r), G_.inv(fold(l))); } value_type operator[](int x) const { return fold(x, x + 1); } }; } // namespace haar_lib #line 3 "Mylib/DataStructure/FenwickTree/fenwick_tree_on_fenwick_tree.cpp" #include <algorithm> #include <numeric> #line 6 "Mylib/DataStructure/FenwickTree/fenwick_tree_on_fenwick_tree.cpp" namespace haar_lib { template <typename AbelianGroup> class fenwick_tree_on_fenwick_tree { public: using value_type = typename AbelianGroup::value_type; private: AbelianGroup G_; int N_ = 0; std::vector<int64_t> xs_, ys_; std::vector<int> c_xs_; std::vector<std::vector<int>> c_ys_; int x_size_; std::vector<fenwick_tree<AbelianGroup>> segs_; public: fenwick_tree_on_fenwick_tree() {} void add(int64_t x, int64_t y) { xs_.push_back(x); ys_.push_back(y); ++N_; } void build() { c_xs_.insert(c_xs_.end(), xs_.begin(), xs_.end()); std::sort(c_xs_.begin(), c_xs_.end()); c_xs_.erase(std::unique(c_xs_.begin(), c_xs_.end()), c_xs_.end()); x_size_ = c_xs_.size(); c_ys_.resize(x_size_ + 1); segs_.resize(x_size_ + 1); std::vector<int> ord(N_); std::iota(ord.begin(), ord.end(), 0); std::sort(ord.begin(), ord.end(), [&](int i, int j) { return ys_[i] < ys_[j]; }); for (auto i : ord) { int x = std::lower_bound(c_xs_.begin(), c_xs_.end(), xs_[i]) - c_xs_.begin(); for (x += 1; x <= x_size_; x += x & (-x)) { c_ys_[x].emplace_back(ys_[i]); } } for (int i = 1; i <= x_size_; ++i) { auto &a = c_ys_[i]; a.erase(std::unique(a.begin(), a.end()), a.end()); segs_[i] = fenwick_tree<AbelianGroup>(c_ys_[i].size()); } } void update(std::pair<int, int> p, const value_type &val) { const auto [x, y] = p; int i = std::lower_bound(c_xs_.begin(), c_xs_.end(), x) - c_xs_.begin(); for (i += 1; i <= x_size_; i += i & (-i)) { int j = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y) - c_ys_[i].begin(); segs_[i].update(j, val); } } private: value_type get(int i, int64_t y1, int64_t y2) const { value_type ret = G_(); for (; i > 0; i -= i & (-i)) { int l = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y1) - c_ys_[i].begin(); int r = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y2) - c_ys_[i].begin(); ret = G_(ret, segs_[i].fold(l, r)); } return ret; } public: // [x1, x2), [y1, y2) value_type fold(std::pair<int64_t, int64_t> p1, std::pair<int64_t, int64_t> p2) const { const auto [x1, y1] = p1; const auto [x2, y2] = p2; int l = std::lower_bound(c_xs_.begin(), c_xs_.end(), x1) - c_xs_.begin(); int r = std::lower_bound(c_xs_.begin(), c_xs_.end(), x2) - c_xs_.begin(); return G_(get(r, y1, y2), G_.inv(get(l, y1, y2))); } }; } // namespace haar_lib