SegmentTree2D()
add(x, y)
(x, y)
build()
update(x, y, value)
get(x1, y1, x2, y2)
Monoid
op
id
add
build
update / get
#pragma once #include "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include <algorithm> #include <vector> namespace haar_lib { template <typename Monoid> class segment_tree_on_segment_tree { public: using value_type = typename Monoid::value_type; private: Monoid M_; int N_ = 0; std::vector<int64_t> xs_, ys_; std::vector<int> c_xs_; std::vector<std::vector<int>> c_ys_; int x_size_; std::vector<segment_tree<Monoid>> segs_; public: segment_tree_on_segment_tree() {} void add(int64_t x, int64_t y) { xs_.push_back(x); ys_.push_back(y); ++N_; } void build() { c_xs_.insert(c_xs_.end(), xs_.begin(), xs_.end()); std::sort(c_xs_.begin(), c_xs_.end()); c_xs_.erase(std::unique(c_xs_.begin(), c_xs_.end()), c_xs_.end()); x_size_ = 1; while (x_size_ < (int) c_xs_.size()) x_size_ *= 2; x_size_ *= 2; c_ys_.resize(x_size_); segs_.resize(x_size_); for (int i = 0; i < N_; ++i) { int j = std::lower_bound(c_xs_.begin(), c_xs_.end(), xs_[i]) - c_xs_.begin(); c_ys_[j + x_size_ / 2].push_back(ys_[i]); } for (int i = 0; i < x_size_ / 2; ++i) { auto &v = c_ys_[i + x_size_ / 2]; std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); } for (int i = x_size_ / 2 - 1; i >= 1; --i) { const auto &a = c_ys_[i << 1 | 0]; const auto &b = c_ys_[i << 1 | 1]; auto &c = c_ys_[i]; c.resize(a.size() + b.size()); std::merge(a.begin(), a.end(), b.begin(), b.end(), c.begin()); c.erase(std::unique(c.begin(), c.end()), c.end()); } for (int i = 1; i < x_size_; ++i) { segs_[i] = segment_tree<Monoid>(c_ys_[i].size()); } } void update(std::pair<int64_t, int64_t> p, const value_type &val) { const auto [x, y] = p; int i = std::lower_bound(c_xs_.begin(), c_xs_.end(), x) - c_xs_.begin() + x_size_ / 2; while (i >= 1) { int j = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y) - c_ys_[i].begin(); segs_[i].update(j, val); i >>= 1; } } private: value_type get_sub(int i, int64_t y1, int64_t y2) const { int l = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y1) - c_ys_[i].begin(); int r = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y2) - c_ys_[i].begin(); return segs_[i].fold(l, r); } public: value_type fold(std::pair<int64_t, int64_t> p1, std::pair<int64_t, int64_t> p2) const { const auto [x1, y1] = p1; const auto [x2, y2] = p2; int l = std::lower_bound(c_xs_.begin(), c_xs_.end(), x1) - c_xs_.begin() + x_size_ / 2; int r = std::lower_bound(c_xs_.begin(), c_xs_.end(), x2) - c_xs_.begin() + x_size_ / 2; value_type ret = M_(); while (l < r) { if (r & 1) ret = M_(ret, get_sub(--r, y1, y2)); if (l & 1) ret = M_(ret, get_sub(l++, y1, y2)); l >>= 1; r >>= 1; } return ret; } }; } // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include <algorithm> #include <cassert> #include <functional> #include <vector> namespace haar_lib { template <typename Monoid> class segment_tree { public: using value_type = typename Monoid::value_type; private: Monoid M_; int depth_, size_, hsize_; std::vector<value_type> data_; public: segment_tree() {} segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_()) {} auto operator[](int i) const { assert(0 <= i and i < hsize_); return data_[hsize_ + i]; } auto fold(int l, int r) const { assert(0 <= l and l <= r and r <= hsize_); value_type ret_left = M_(); value_type ret_right = M_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) ret_right = M_(data_[--R], ret_right); if (L & 1) ret_left = M_(ret_left, data_[L++]); L >>= 1, R >>= 1; } return M_(ret_left, ret_right); } auto fold_all() const { return data_[1]; } void set(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = x; while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } void update(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = M_(data_[i], x); while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i]; for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init(const T &val) { init_with_vector(std::vector<value_type>(hsize_, val)); } private: template <bool Lower, typename F> int bound(const int l, const int r, value_type x, F f) const { std::vector<int> pl, pr; int L = l + hsize_; int R = r + hsize_; while (L < R) { if (R & 1) pr.push_back(--R); if (L & 1) pl.push_back(L++); L >>= 1, R >>= 1; } std::reverse(pr.begin(), pr.end()); pl.insert(pl.end(), pr.begin(), pr.end()); value_type a = M_(); for (int i : pl) { auto b = M_(a, data_[i]); if ((Lower and not f(b, x)) or (not Lower and f(x, b))) { while (i < hsize_) { const auto c = M_(a, data_[i << 1 | 0]); if ((Lower and not f(c, x)) or (not Lower and f(x, c))) { i = i << 1 | 0; } else { a = c; i = i << 1 | 1; } } return i - hsize_; } a = b; } return r; } public: template <typename F = std::less<value_type>> int lower_bound(int l, int r, value_type x, F f = F()) const { return bound<true>(l, r, x, f); } template <typename F = std::less<value_type>> int upper_bound(int l, int r, value_type x, F f = F()) const { return bound<false>(l, r, x, f); } }; } // namespace haar_lib #line 5 "Mylib/DataStructure/SegmentTree/segment_tree_on_segment_tree.cpp" namespace haar_lib { template <typename Monoid> class segment_tree_on_segment_tree { public: using value_type = typename Monoid::value_type; private: Monoid M_; int N_ = 0; std::vector<int64_t> xs_, ys_; std::vector<int> c_xs_; std::vector<std::vector<int>> c_ys_; int x_size_; std::vector<segment_tree<Monoid>> segs_; public: segment_tree_on_segment_tree() {} void add(int64_t x, int64_t y) { xs_.push_back(x); ys_.push_back(y); ++N_; } void build() { c_xs_.insert(c_xs_.end(), xs_.begin(), xs_.end()); std::sort(c_xs_.begin(), c_xs_.end()); c_xs_.erase(std::unique(c_xs_.begin(), c_xs_.end()), c_xs_.end()); x_size_ = 1; while (x_size_ < (int) c_xs_.size()) x_size_ *= 2; x_size_ *= 2; c_ys_.resize(x_size_); segs_.resize(x_size_); for (int i = 0; i < N_; ++i) { int j = std::lower_bound(c_xs_.begin(), c_xs_.end(), xs_[i]) - c_xs_.begin(); c_ys_[j + x_size_ / 2].push_back(ys_[i]); } for (int i = 0; i < x_size_ / 2; ++i) { auto &v = c_ys_[i + x_size_ / 2]; std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); } for (int i = x_size_ / 2 - 1; i >= 1; --i) { const auto &a = c_ys_[i << 1 | 0]; const auto &b = c_ys_[i << 1 | 1]; auto &c = c_ys_[i]; c.resize(a.size() + b.size()); std::merge(a.begin(), a.end(), b.begin(), b.end(), c.begin()); c.erase(std::unique(c.begin(), c.end()), c.end()); } for (int i = 1; i < x_size_; ++i) { segs_[i] = segment_tree<Monoid>(c_ys_[i].size()); } } void update(std::pair<int64_t, int64_t> p, const value_type &val) { const auto [x, y] = p; int i = std::lower_bound(c_xs_.begin(), c_xs_.end(), x) - c_xs_.begin() + x_size_ / 2; while (i >= 1) { int j = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y) - c_ys_[i].begin(); segs_[i].update(j, val); i >>= 1; } } private: value_type get_sub(int i, int64_t y1, int64_t y2) const { int l = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y1) - c_ys_[i].begin(); int r = std::lower_bound(c_ys_[i].begin(), c_ys_[i].end(), y2) - c_ys_[i].begin(); return segs_[i].fold(l, r); } public: value_type fold(std::pair<int64_t, int64_t> p1, std::pair<int64_t, int64_t> p2) const { const auto [x1, y1] = p1; const auto [x2, y2] = p2; int l = std::lower_bound(c_xs_.begin(), c_xs_.end(), x1) - c_xs_.begin() + x_size_ / 2; int r = std::lower_bound(c_xs_.begin(), c_xs_.end(), x2) - c_xs_.begin() + x_size_ / 2; value_type ret = M_(); while (l < r) { if (r & 1) ret = M_(ret, get_sub(--r, y1, y2)); if (l & 1) ret = M_(ret, get_sub(l++, y1, y2)); l >>= 1; r >>= 1; } return ret; } }; } // namespace haar_lib