#pragma once #include "Mylib/Geometry/Float/geometry_template.cpp" namespace haar_lib { namespace ccw_impl { enum status { ONLINE_BACK = -2, COUNTER_CLOCKWISE = -1, ON_SEGMENT = 0, CLOCKWISE = 1, ONLINE_FRONT = 2 }; } struct ccw { ccw_impl::status value; bool operator==(const ccw &that) const { return value == that.value; }; bool operator!=(const ccw &that) const { return value != that.value; }; bool is_online_back() const { return value == ccw_impl::status::ONLINE_BACK; } bool is_counter_clockwise() const { return value == ccw_impl::status::COUNTER_CLOCKWISE; } bool is_on_segment() const { return value == ccw_impl::status::ON_SEGMENT; } bool is_clockwise() const { return value == ccw_impl::status::CLOCKWISE; } bool is_online_front() const { return value == ccw_impl::status::ONLINE_FRONT; } }; template <typename T> ccw check_ccw(const point<T> &p0, const point<T> &p1, const point<T> &p2) { using namespace ccw_impl; const T cr = cross(p1 - p0, p2 - p0); const T d = dot(p1 - p0, p2 - p0); if (cr == 0) { if (d < 0) return ccw({ONLINE_BACK}); else if (abs(p2 - p0) > abs(p1 - p0)) return ccw({ONLINE_FRONT}); else return ccw({ON_SEGMENT}); } else if (cr > 0) { return ccw({COUNTER_CLOCKWISE}); } else { return ccw({CLOCKWISE}); } } } // namespace haar_lib
#line 2 "Mylib/Geometry/Float/geometry_template.cpp" #include <cmath> #include <iostream> #include <vector> namespace haar_lib { template <typename T> struct vec { T x, y; vec() {} vec(T x, T y) : x(x), y(y) {} friend auto operator+(const vec &a, const vec &b) { return vec(a.x + b.x, a.y + b.y); } friend auto operator-(const vec &a, const vec &b) { return vec(a.x - b.x, a.y - b.y); } friend auto operator-(const vec &a) { return vec(-a.x, -a.y); } friend bool operator==(const vec &a, const vec &b) { return a.x == b.x and a.y == b.y; } friend bool operator!=(const vec &a, const vec &b) { return !(a == b); } friend bool operator<(const vec &a, const vec &b) { return a.x < b.x or (a.x == b.x and a.y < b.y); } friend std::istream &operator>>(std::istream &s, vec &a) { s >> a.x >> a.y; return s; } }; template <typename T, typename U> auto operator*(const vec<T> &a, const U &k) { return vec<T>(a.x * k, a.y * k); } template <typename T, typename U> auto operator*(const U &k, const vec<T> &a) { return vec<T>(a.x * k, a.y * k); } template <typename T, typename U> auto operator/(const vec<T> &a, const U &k) { return vec<T>(a.x / k, a.y / k); } template <typename T> using point = vec<T>; template <typename T> T abs(const vec<T> &a) { return sqrt(a.x * a.x + a.y * a.y); } template <typename T> T abs_sq(const vec<T> &a) { return a.x * a.x + a.y * a.y; } template <typename T> T dot(const vec<T> &a, const vec<T> &b) { return a.x * b.x + a.y * b.y; } template <typename T> T cross(const vec<T> &a, const vec<T> &b) { return a.x * b.y - a.y * b.x; } template <typename T> auto unit(const vec<T> &a) { return a / abs(a); } template <typename T> auto normal(const vec<T> &p) { return vec<T>(-p.y, p.x); } template <typename T> auto polar(const T &r, const T &ang) { return vec<T>(r * cos(ang), r * sin(ang)); } template <typename T> T angle(const vec<T> &a, const vec<T> &b) { return atan2(b.y - a.y, b.x - a.x); } template <typename T> T phase(const vec<T> &a) { return atan2(a.y, a.x); } template <typename T> T angle_diff(const vec<T> &a, const vec<T> &b) { T r = phase(b) - phase(a); if (r < -M_PI) return r + 2 * M_PI; else if (r > M_PI) return r - 2 * M_PI; return r; } template <typename T> struct line { point<T> from, to; line() : from(), to() {} line(const point<T> &from, const point<T> &to) : from(from), to(to) {} }; template <typename T> using segment = line<T>; template <typename T> auto unit(const line<T> &a) { return unit(a.to - a.from); } template <typename T> auto normal(const line<T> &a) { return normal(a.to - a.from); } template <typename T> auto diff(const segment<T> &a) { return a.to - a.from; } template <typename T> T abs(const segment<T> &a) { return abs(diff(a)); } template <typename T> T dot(const line<T> &a, const line<T> &b) { return dot(diff(a), diff(b)); } template <typename T> T cross(const line<T> &a, const line<T> &b) { return cross(diff(a), diff(b)); } template <typename T> using polygon = std::vector<point<T>>; template <typename T> struct circle { point<T> center; T radius; circle() : center(), radius(0) {} circle(const point<T> ¢er, T radius) : center(center), radius(radius) {} }; template <typename T> std::ostream &operator<<(std::ostream &s, const vec<T> &a) { s << "(" << a.x << ", " << a.y << ")"; return s; } template <typename T> std::ostream &operator<<(std::ostream &s, const line<T> &a) { s << "(" << a.from << " -> " << a.to << ")"; return s; } template <typename T> std::ostream &operator<<(std::ostream &s, const circle<T> &a) { s << "(" << "center: " << a.center << ", " << "radius: " << a.radius << ")"; return s; } } // namespace haar_lib #line 3 "Mylib/Geometry/Float/ccw.cpp" namespace haar_lib { namespace ccw_impl { enum status { ONLINE_BACK = -2, COUNTER_CLOCKWISE = -1, ON_SEGMENT = 0, CLOCKWISE = 1, ONLINE_FRONT = 2 }; } struct ccw { ccw_impl::status value; bool operator==(const ccw &that) const { return value == that.value; }; bool operator!=(const ccw &that) const { return value != that.value; }; bool is_online_back() const { return value == ccw_impl::status::ONLINE_BACK; } bool is_counter_clockwise() const { return value == ccw_impl::status::COUNTER_CLOCKWISE; } bool is_on_segment() const { return value == ccw_impl::status::ON_SEGMENT; } bool is_clockwise() const { return value == ccw_impl::status::CLOCKWISE; } bool is_online_front() const { return value == ccw_impl::status::ONLINE_FRONT; } }; template <typename T> ccw check_ccw(const point<T> &p0, const point<T> &p1, const point<T> &p2) { using namespace ccw_impl; const T cr = cross(p1 - p0, p2 - p0); const T d = dot(p1 - p0, p2 - p0); if (cr == 0) { if (d < 0) return ccw({ONLINE_BACK}); else if (abs(p2 - p0) > abs(p1 - p0)) return ccw({ONLINE_FRONT}); else return ccw({ON_SEGMENT}); } else if (cr > 0) { return ccw({COUNTER_CLOCKWISE}); } else { return ccw({CLOCKWISE}); } } } // namespace haar_lib