#pragma once #include <vector> #include "Mylib/Geometry/Float/geometry_template.cpp" namespace haar_lib { template <typename T> std::vector<point<T>> common_tangent_of_circles(const circle<T> &a, const circle<T> &b) { const T d = abs(b.center - a.center); const auto n = unit(b.center - a.center); const auto cc = b.center - a.center; const T r = a.radius - b.radius; const T R = a.radius + b.radius; if (a.radius + b.radius == d) { // 一方が他方に外接している。 return { a.center + (cc * r + normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * r - normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + n * a.radius}; } else if (a.radius + b.radius < d) { // aとbは互いに離れている。 return { a.center + (cc * r + normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * r - normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * R + normal(cc) * sqrt(abs_sq(cc) - R * R)) * a.radius / abs_sq(cc), a.center + (cc * R - normal(cc) * sqrt(abs_sq(cc) - R * R)) * a.radius / abs_sq(cc)}; } else if (a.radius + b.radius > d and d > abs(a.radius - b.radius)) { // aとbは二点で交差している。 return { a.center + (cc * r + normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * r - normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc)}; } else if (abs(a.radius - b.radius) == d) { // 一方が他方に内接している。 return { a.radius > b.radius ? a.center + n * a.radius : b.center - n * b.radius}; } return {}; } } // namespace haar_lib
#line 2 "Mylib/Geometry/Float/common_tangent_of_circles.cpp" #include <vector> #line 2 "Mylib/Geometry/Float/geometry_template.cpp" #include <cmath> #include <iostream> #line 5 "Mylib/Geometry/Float/geometry_template.cpp" namespace haar_lib { template <typename T> struct vec { T x, y; vec() {} vec(T x, T y) : x(x), y(y) {} friend auto operator+(const vec &a, const vec &b) { return vec(a.x + b.x, a.y + b.y); } friend auto operator-(const vec &a, const vec &b) { return vec(a.x - b.x, a.y - b.y); } friend auto operator-(const vec &a) { return vec(-a.x, -a.y); } friend bool operator==(const vec &a, const vec &b) { return a.x == b.x and a.y == b.y; } friend bool operator!=(const vec &a, const vec &b) { return !(a == b); } friend bool operator<(const vec &a, const vec &b) { return a.x < b.x or (a.x == b.x and a.y < b.y); } friend std::istream &operator>>(std::istream &s, vec &a) { s >> a.x >> a.y; return s; } }; template <typename T, typename U> auto operator*(const vec<T> &a, const U &k) { return vec<T>(a.x * k, a.y * k); } template <typename T, typename U> auto operator*(const U &k, const vec<T> &a) { return vec<T>(a.x * k, a.y * k); } template <typename T, typename U> auto operator/(const vec<T> &a, const U &k) { return vec<T>(a.x / k, a.y / k); } template <typename T> using point = vec<T>; template <typename T> T abs(const vec<T> &a) { return sqrt(a.x * a.x + a.y * a.y); } template <typename T> T abs_sq(const vec<T> &a) { return a.x * a.x + a.y * a.y; } template <typename T> T dot(const vec<T> &a, const vec<T> &b) { return a.x * b.x + a.y * b.y; } template <typename T> T cross(const vec<T> &a, const vec<T> &b) { return a.x * b.y - a.y * b.x; } template <typename T> auto unit(const vec<T> &a) { return a / abs(a); } template <typename T> auto normal(const vec<T> &p) { return vec<T>(-p.y, p.x); } template <typename T> auto polar(const T &r, const T &ang) { return vec<T>(r * cos(ang), r * sin(ang)); } template <typename T> T angle(const vec<T> &a, const vec<T> &b) { return atan2(b.y - a.y, b.x - a.x); } template <typename T> T phase(const vec<T> &a) { return atan2(a.y, a.x); } template <typename T> T angle_diff(const vec<T> &a, const vec<T> &b) { T r = phase(b) - phase(a); if (r < -M_PI) return r + 2 * M_PI; else if (r > M_PI) return r - 2 * M_PI; return r; } template <typename T> struct line { point<T> from, to; line() : from(), to() {} line(const point<T> &from, const point<T> &to) : from(from), to(to) {} }; template <typename T> using segment = line<T>; template <typename T> auto unit(const line<T> &a) { return unit(a.to - a.from); } template <typename T> auto normal(const line<T> &a) { return normal(a.to - a.from); } template <typename T> auto diff(const segment<T> &a) { return a.to - a.from; } template <typename T> T abs(const segment<T> &a) { return abs(diff(a)); } template <typename T> T dot(const line<T> &a, const line<T> &b) { return dot(diff(a), diff(b)); } template <typename T> T cross(const line<T> &a, const line<T> &b) { return cross(diff(a), diff(b)); } template <typename T> using polygon = std::vector<point<T>>; template <typename T> struct circle { point<T> center; T radius; circle() : center(), radius(0) {} circle(const point<T> ¢er, T radius) : center(center), radius(radius) {} }; template <typename T> std::ostream &operator<<(std::ostream &s, const vec<T> &a) { s << "(" << a.x << ", " << a.y << ")"; return s; } template <typename T> std::ostream &operator<<(std::ostream &s, const line<T> &a) { s << "(" << a.from << " -> " << a.to << ")"; return s; } template <typename T> std::ostream &operator<<(std::ostream &s, const circle<T> &a) { s << "(" << "center: " << a.center << ", " << "radius: " << a.radius << ")"; return s; } } // namespace haar_lib #line 4 "Mylib/Geometry/Float/common_tangent_of_circles.cpp" namespace haar_lib { template <typename T> std::vector<point<T>> common_tangent_of_circles(const circle<T> &a, const circle<T> &b) { const T d = abs(b.center - a.center); const auto n = unit(b.center - a.center); const auto cc = b.center - a.center; const T r = a.radius - b.radius; const T R = a.radius + b.radius; if (a.radius + b.radius == d) { // 一方が他方に外接している。 return { a.center + (cc * r + normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * r - normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + n * a.radius}; } else if (a.radius + b.radius < d) { // aとbは互いに離れている。 return { a.center + (cc * r + normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * r - normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * R + normal(cc) * sqrt(abs_sq(cc) - R * R)) * a.radius / abs_sq(cc), a.center + (cc * R - normal(cc) * sqrt(abs_sq(cc) - R * R)) * a.radius / abs_sq(cc)}; } else if (a.radius + b.radius > d and d > abs(a.radius - b.radius)) { // aとbは二点で交差している。 return { a.center + (cc * r + normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc), a.center + (cc * r - normal(cc) * sqrt(abs_sq(cc) - r * r)) * a.radius / abs_sq(cc)}; } else if (abs(a.radius - b.radius) == d) { // 一方が他方に内接している。 return { a.radius > b.radius ? a.center + n * a.radius : b.center - n * b.radius}; } return {}; } } // namespace haar_lib