#pragma once #include <vector> #include "Mylib/Geometry/Float/geometry_template.cpp" namespace haar_lib { namespace intersect_circles_impl { enum class status_t { SAME, INSIDE, INSCRIBED, INTERSECTED, CIRCUMSCRIBED, OUTSIDE }; template <typename T> struct result { status_t status; std::vector<point<T>> crosspoints; bool is_same() const { return status == status_t::SAME; } bool is_inside() const { return status == status_t::INSIDE; } bool is_inscribed() const { return status == status_t::INSCRIBED; } bool is_intersected() const { return status == status_t::INTERSECTED; } bool is_circumscribed() const { return status == status_t::CIRCUMSCRIBED; } bool is_outside() const { return status == status_t::OUTSIDE; } }; } // namespace intersect_circles_impl template <typename T> auto intersect_circles(const circle<T> &a, const circle<T> &b) { using namespace intersect_circles_impl; const T d = abs(a.center - b.center); const T x = acos((a.radius * a.radius + d * d - b.radius * b.radius) / ((T) 2.0 * d * a.radius)); const T t = atan2(b.center.y - a.center.y, b.center.x - a.center.x); if (a.radius + b.radius == d) { return result<T>({status_t::CIRCUMSCRIBED, {a.center + polar(a.radius, t)}}); } else if (abs(a.radius - b.radius) == d) { return result<T>({status_t::INSCRIBED, {a.center + polar(a.radius, t)}}); } else if (a.radius + b.radius > d and d > abs(a.radius - b.radius)) { return result<T>( {status_t::INTERSECTED, {a.center + polar(a.radius, t + x), a.center + polar(a.radius, t - x)}}); } else if (a.radius + b.radius < d) { return result<T>({status_t::OUTSIDE, {}}); } else if (abs(a.radius - b.radius) > d) { return result<T>({status_t::INSIDE, {}}); } return result<T>({status_t::SAME, {}}); } } // namespace haar_lib
#line 2 "Mylib/Geometry/Float/intersect_circles.cpp" #include <vector> #line 2 "Mylib/Geometry/Float/geometry_template.cpp" #include <cmath> #include <iostream> #line 5 "Mylib/Geometry/Float/geometry_template.cpp" namespace haar_lib { template <typename T> struct vec { T x, y; vec() {} vec(T x, T y) : x(x), y(y) {} friend auto operator+(const vec &a, const vec &b) { return vec(a.x + b.x, a.y + b.y); } friend auto operator-(const vec &a, const vec &b) { return vec(a.x - b.x, a.y - b.y); } friend auto operator-(const vec &a) { return vec(-a.x, -a.y); } friend bool operator==(const vec &a, const vec &b) { return a.x == b.x and a.y == b.y; } friend bool operator!=(const vec &a, const vec &b) { return !(a == b); } friend bool operator<(const vec &a, const vec &b) { return a.x < b.x or (a.x == b.x and a.y < b.y); } friend std::istream &operator>>(std::istream &s, vec &a) { s >> a.x >> a.y; return s; } }; template <typename T, typename U> auto operator*(const vec<T> &a, const U &k) { return vec<T>(a.x * k, a.y * k); } template <typename T, typename U> auto operator*(const U &k, const vec<T> &a) { return vec<T>(a.x * k, a.y * k); } template <typename T, typename U> auto operator/(const vec<T> &a, const U &k) { return vec<T>(a.x / k, a.y / k); } template <typename T> using point = vec<T>; template <typename T> T abs(const vec<T> &a) { return sqrt(a.x * a.x + a.y * a.y); } template <typename T> T abs_sq(const vec<T> &a) { return a.x * a.x + a.y * a.y; } template <typename T> T dot(const vec<T> &a, const vec<T> &b) { return a.x * b.x + a.y * b.y; } template <typename T> T cross(const vec<T> &a, const vec<T> &b) { return a.x * b.y - a.y * b.x; } template <typename T> auto unit(const vec<T> &a) { return a / abs(a); } template <typename T> auto normal(const vec<T> &p) { return vec<T>(-p.y, p.x); } template <typename T> auto polar(const T &r, const T &ang) { return vec<T>(r * cos(ang), r * sin(ang)); } template <typename T> T angle(const vec<T> &a, const vec<T> &b) { return atan2(b.y - a.y, b.x - a.x); } template <typename T> T phase(const vec<T> &a) { return atan2(a.y, a.x); } template <typename T> T angle_diff(const vec<T> &a, const vec<T> &b) { T r = phase(b) - phase(a); if (r < -M_PI) return r + 2 * M_PI; else if (r > M_PI) return r - 2 * M_PI; return r; } template <typename T> struct line { point<T> from, to; line() : from(), to() {} line(const point<T> &from, const point<T> &to) : from(from), to(to) {} }; template <typename T> using segment = line<T>; template <typename T> auto unit(const line<T> &a) { return unit(a.to - a.from); } template <typename T> auto normal(const line<T> &a) { return normal(a.to - a.from); } template <typename T> auto diff(const segment<T> &a) { return a.to - a.from; } template <typename T> T abs(const segment<T> &a) { return abs(diff(a)); } template <typename T> T dot(const line<T> &a, const line<T> &b) { return dot(diff(a), diff(b)); } template <typename T> T cross(const line<T> &a, const line<T> &b) { return cross(diff(a), diff(b)); } template <typename T> using polygon = std::vector<point<T>>; template <typename T> struct circle { point<T> center; T radius; circle() : center(), radius(0) {} circle(const point<T> ¢er, T radius) : center(center), radius(radius) {} }; template <typename T> std::ostream &operator<<(std::ostream &s, const vec<T> &a) { s << "(" << a.x << ", " << a.y << ")"; return s; } template <typename T> std::ostream &operator<<(std::ostream &s, const line<T> &a) { s << "(" << a.from << " -> " << a.to << ")"; return s; } template <typename T> std::ostream &operator<<(std::ostream &s, const circle<T> &a) { s << "(" << "center: " << a.center << ", " << "radius: " << a.radius << ")"; return s; } } // namespace haar_lib #line 4 "Mylib/Geometry/Float/intersect_circles.cpp" namespace haar_lib { namespace intersect_circles_impl { enum class status_t { SAME, INSIDE, INSCRIBED, INTERSECTED, CIRCUMSCRIBED, OUTSIDE }; template <typename T> struct result { status_t status; std::vector<point<T>> crosspoints; bool is_same() const { return status == status_t::SAME; } bool is_inside() const { return status == status_t::INSIDE; } bool is_inscribed() const { return status == status_t::INSCRIBED; } bool is_intersected() const { return status == status_t::INTERSECTED; } bool is_circumscribed() const { return status == status_t::CIRCUMSCRIBED; } bool is_outside() const { return status == status_t::OUTSIDE; } }; } // namespace intersect_circles_impl template <typename T> auto intersect_circles(const circle<T> &a, const circle<T> &b) { using namespace intersect_circles_impl; const T d = abs(a.center - b.center); const T x = acos((a.radius * a.radius + d * d - b.radius * b.radius) / ((T) 2.0 * d * a.radius)); const T t = atan2(b.center.y - a.center.y, b.center.x - a.center.x); if (a.radius + b.radius == d) { return result<T>({status_t::CIRCUMSCRIBED, {a.center + polar(a.radius, t)}}); } else if (abs(a.radius - b.radius) == d) { return result<T>({status_t::INSCRIBED, {a.center + polar(a.radius, t)}}); } else if (a.radius + b.radius > d and d > abs(a.radius - b.radius)) { return result<T>( {status_t::INTERSECTED, {a.center + polar(a.radius, t + x), a.center + polar(a.radius, t - x)}}); } else if (a.radius + b.radius < d) { return result<T>({status_t::OUTSIDE, {}}); } else if (abs(a.radius - b.radius) > d) { return result<T>({status_t::INSIDE, {}}); } return result<T>({status_t::SAME, {}}); } } // namespace haar_lib