#pragma once #include <optional> #include <stack> #include <utility> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> auto check_bipartite_graph(const graph<T> &g) { std::vector<std::optional<std::pair<std::vector<int>, std::vector<int>>>> ret; const int N = g.size(); std::vector<int> check(N, -1); std::vector<bool> visit(N); for (int i = 0; i < N; ++i) { if (visit[i]) continue; std::vector<int> a, b; bool res = [&]() { std::stack<int> st; st.push(i); check[i] = 0; a.push_back(i); while (not st.empty()) { auto cur = st.top(); st.pop(); if (visit[cur]) continue; visit[cur] = true; for (auto &e : g[cur]) { if (check[e.to] == check[cur]) return false; if (check[e.to] == -1) { if (check[cur] == 0) { check[e.to] = 1; b.push_back(e.to); } else { check[e.to] = 0; a.push_back(e.to); } st.push(e.to); } } } return true; }(); if (res) { ret.emplace_back(std::make_pair(a, b)); } else { ret.emplace_back(); } } return ret; } } // namespace haar_lib
#line 2 "Mylib/Graph/BipartiteGraph/check_bipartite_graph.cpp" #include <optional> #include <stack> #include <utility> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 7 "Mylib/Graph/BipartiteGraph/check_bipartite_graph.cpp" namespace haar_lib { template <typename T> auto check_bipartite_graph(const graph<T> &g) { std::vector<std::optional<std::pair<std::vector<int>, std::vector<int>>>> ret; const int N = g.size(); std::vector<int> check(N, -1); std::vector<bool> visit(N); for (int i = 0; i < N; ++i) { if (visit[i]) continue; std::vector<int> a, b; bool res = [&]() { std::stack<int> st; st.push(i); check[i] = 0; a.push_back(i); while (not st.empty()) { auto cur = st.top(); st.pop(); if (visit[cur]) continue; visit[cur] = true; for (auto &e : g[cur]) { if (check[e.to] == check[cur]) return false; if (check[e.to] == -1) { if (check[cur] == 0) { check[e.to] = 1; b.push_back(e.to); } else { check[e.to] = 0; a.push_back(e.to); } st.push(e.to); } } } return true; }(); if (res) { ret.emplace_back(std::make_pair(a, b)); } else { ret.emplace_back(); } } return ret; } } // namespace haar_lib