Undirected shortest cycle
(Mylib/Graph/Cycle/undirected_shortest_cycle.cpp)
Operations
-
shortest_cycle(g, src)
-
src
始点の最小閉路を検出する。
- Time complexity $O(E)$
Requirements
Notes
Problems
References
Depends on
Code
#pragma once
#include <optional>
#include <queue>
#include <vector>
#include "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
std::optional<int> shortest_cycle(const graph<T> &g, const int src) {
for (auto &e : g[src]) {
if (e.to == src) return 1; // self loop
}
if (g[src].size() <= 1) return {};
const int N = g.size();
std::vector<int> visit(N);
std::vector<int> dist(N);
visit[src] = -1;
std::queue<int> q;
for (int i = 0; i < (int) g[src].size(); ++i) {
int j = g[src][i].to;
if (visit[j]) return 2; // multiple edges
q.push(j);
visit[j] = i + 1;
dist[j] = 1;
}
while (not q.empty()) {
int i = q.front();
q.pop();
for (auto &e : g[i]) {
if (not visit[e.to]) {
visit[e.to] = visit[i];
dist[e.to] = dist[i] + 1;
q.push(e.to);
} else {
if (e.to != src and visit[e.from] != visit[e.to]) {
return dist[e.from] + dist[e.to] + 1;
}
}
}
}
return {};
}
} // namespace haar_lib
#line 2 "Mylib/Graph/Cycle/undirected_shortest_cycle.cpp"
#include <optional>
#include <queue>
#include <vector>
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 6 "Mylib/Graph/Cycle/undirected_shortest_cycle.cpp"
namespace haar_lib {
template <typename T>
std::optional<int> shortest_cycle(const graph<T> &g, const int src) {
for (auto &e : g[src]) {
if (e.to == src) return 1; // self loop
}
if (g[src].size() <= 1) return {};
const int N = g.size();
std::vector<int> visit(N);
std::vector<int> dist(N);
visit[src] = -1;
std::queue<int> q;
for (int i = 0; i < (int) g[src].size(); ++i) {
int j = g[src][i].to;
if (visit[j]) return 2; // multiple edges
q.push(j);
visit[j] = i + 1;
dist[j] = 1;
}
while (not q.empty()) {
int i = q.front();
q.pop();
for (auto &e : g[i]) {
if (not visit[e.to]) {
visit[e.to] = visit[i];
dist[e.to] = dist[i] + 1;
q.push(e.to);
} else {
if (e.to != src and visit[e.from] != visit[e.to]) {
return dist[e.from] + dist[e.to] + 1;
}
}
}
}
return {};
}
} // namespace haar_lib
Back to top page