shortest_cycle(g, src)
src
#pragma once #include <optional> #include <queue> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> std::optional<int> shortest_cycle(const graph<T> &g, const int src) { for (auto &e : g[src]) { if (e.to == src) return 1; // self loop } if (g[src].size() <= 1) return {}; const int N = g.size(); std::vector<int> visit(N); std::vector<int> dist(N); visit[src] = -1; std::queue<int> q; for (int i = 0; i < (int) g[src].size(); ++i) { int j = g[src][i].to; if (visit[j]) return 2; // multiple edges q.push(j); visit[j] = i + 1; dist[j] = 1; } while (not q.empty()) { int i = q.front(); q.pop(); for (auto &e : g[i]) { if (not visit[e.to]) { visit[e.to] = visit[i]; dist[e.to] = dist[i] + 1; q.push(e.to); } else { if (e.to != src and visit[e.from] != visit[e.to]) { return dist[e.from] + dist[e.to] + 1; } } } } return {}; } } // namespace haar_lib
#line 2 "Mylib/Graph/Cycle/undirected_shortest_cycle.cpp" #include <optional> #include <queue> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 6 "Mylib/Graph/Cycle/undirected_shortest_cycle.cpp" namespace haar_lib { template <typename T> std::optional<int> shortest_cycle(const graph<T> &g, const int src) { for (auto &e : g[src]) { if (e.to == src) return 1; // self loop } if (g[src].size() <= 1) return {}; const int N = g.size(); std::vector<int> visit(N); std::vector<int> dist(N); visit[src] = -1; std::queue<int> q; for (int i = 0; i < (int) g[src].size(); ++i) { int j = g[src][i].to; if (visit[j]) return 2; // multiple edges q.push(j); visit[j] = i + 1; dist[j] = 1; } while (not q.empty()) { int i = q.front(); q.pop(); for (auto &e : g[i]) { if (not visit[e.to]) { visit[e.to] = visit[i]; dist[e.to] = dist[i] + 1; q.push(e.to); } else { if (e.to != src and visit[e.from] != visit[e.to]) { return dist[e.from] + dist[e.to] + 1; } } } } return {}; } } // namespace haar_lib