#pragma once #include <algorithm> #include <cassert> #include <queue> #include <utility> #include <vector> namespace haar_lib { namespace dinic_impl { template <typename T> struct edge { int from, to, rev; T cap; bool is_rev; edge(int from, int to, int rev, T cap, bool is_rev) : from(from), to(to), rev(rev), cap(cap), is_rev(is_rev) {} }; } // namespace dinic_impl template <typename T> class dinic { public: using edge = dinic_impl::edge<T>; using capacity_type = T; private: int size_; std::vector<std::vector<edge>> g_; std::vector<int> level_; bool build_level(int s, int t) { std::fill(level_.begin(), level_.end(), 0); level_[s] = 1; std::queue<int> q; q.push(s); while (not q.empty()) { int cur = q.front(); q.pop(); for (auto &e : g_[cur]) { if (level_[e.to] == 0 and e.cap > 0) { level_[e.to] = level_[e.from] + 1; q.push(e.to); } } } return level_[t] != 0; } void dfs(std::vector<edge *> &path, T &flow, int cur, int t) { if (cur == t) { T f = std::numeric_limits<T>::max(); for (auto e : path) { f = std::min(f, (*e).cap); } for (auto e : path) { (*e).cap -= f; g_[e->to][e->rev].cap += f; } flow += f; } else { for (auto &e : g_[cur]) { if (e.cap > 0 and level_[e.to] > level_[e.from]) { path.emplace_back(&e); dfs(path, flow, e.to, t); path.pop_back(); } } } } public: dinic() {} dinic(int size) : size_(size), g_(size), level_(size) {} void add_edge(int from, int to, T c) { assert(0 <= from and from < size_); assert(0 <= to and to < size_); g_[from].emplace_back(from, to, (int) g_[to].size(), c, false); g_[to].emplace_back(to, from, (int) g_[from].size() - 1, 0, true); } T max_flow(int s, int t) { assert(0 <= s and s < size_); assert(0 <= t and t < size_); T f = 0; while (build_level(s, t)) { T a = 0; std::vector<edge *> path; dfs(path, a, s, t); f += a; } return f; } std::vector<edge> edges() const { std::vector<edge> ret; for (auto &v : g_) ret.insert(ret.end(), v.begin(), v.end()); return ret; } }; } // namespace haar_lib
#line 2 "Mylib/Graph/Flow/dinic.cpp" #include <algorithm> #include <cassert> #include <queue> #include <utility> #include <vector> namespace haar_lib { namespace dinic_impl { template <typename T> struct edge { int from, to, rev; T cap; bool is_rev; edge(int from, int to, int rev, T cap, bool is_rev) : from(from), to(to), rev(rev), cap(cap), is_rev(is_rev) {} }; } // namespace dinic_impl template <typename T> class dinic { public: using edge = dinic_impl::edge<T>; using capacity_type = T; private: int size_; std::vector<std::vector<edge>> g_; std::vector<int> level_; bool build_level(int s, int t) { std::fill(level_.begin(), level_.end(), 0); level_[s] = 1; std::queue<int> q; q.push(s); while (not q.empty()) { int cur = q.front(); q.pop(); for (auto &e : g_[cur]) { if (level_[e.to] == 0 and e.cap > 0) { level_[e.to] = level_[e.from] + 1; q.push(e.to); } } } return level_[t] != 0; } void dfs(std::vector<edge *> &path, T &flow, int cur, int t) { if (cur == t) { T f = std::numeric_limits<T>::max(); for (auto e : path) { f = std::min(f, (*e).cap); } for (auto e : path) { (*e).cap -= f; g_[e->to][e->rev].cap += f; } flow += f; } else { for (auto &e : g_[cur]) { if (e.cap > 0 and level_[e.to] > level_[e.from]) { path.emplace_back(&e); dfs(path, flow, e.to, t); path.pop_back(); } } } } public: dinic() {} dinic(int size) : size_(size), g_(size), level_(size) {} void add_edge(int from, int to, T c) { assert(0 <= from and from < size_); assert(0 <= to and to < size_); g_[from].emplace_back(from, to, (int) g_[to].size(), c, false); g_[to].emplace_back(to, from, (int) g_[from].size() - 1, 0, true); } T max_flow(int s, int t) { assert(0 <= s and s < size_); assert(0 <= t and t < size_); T f = 0; while (build_level(s, t)) { T a = 0; std::vector<edge *> path; dfs(path, a, s, t); f += a; } return f; } std::vector<edge> edges() const { std::vector<edge> ret; for (auto &v : g_) ret.insert(ret.end(), v.begin(), v.end()); return ret; } }; } // namespace haar_lib