kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:question: Dinic algorithm
(Mylib/Graph/Flow/dinic.cpp)

Operations

Requirements

Notes

Problems

References

Verified with

Code

#pragma once
#include <algorithm>
#include <cassert>
#include <queue>
#include <utility>
#include <vector>

namespace haar_lib {
  namespace dinic_impl {
    template <typename T>
    struct edge {
      int from, to, rev;
      T cap;
      bool is_rev;
      edge(int from, int to, int rev, T cap, bool is_rev) : from(from), to(to), rev(rev), cap(cap), is_rev(is_rev) {}
    };
  }  // namespace dinic_impl

  template <typename T>
  class dinic {
  public:
    using edge          = dinic_impl::edge<T>;
    using capacity_type = T;

  private:
    int size_;
    std::vector<std::vector<edge>> g_;
    std::vector<int> level_;

    bool build_level(int s, int t) {
      std::fill(level_.begin(), level_.end(), 0);
      level_[s] = 1;
      std::queue<int> q;
      q.push(s);
      while (not q.empty()) {
        int cur = q.front();
        q.pop();
        for (auto &e : g_[cur]) {
          if (level_[e.to] == 0 and e.cap > 0) {
            level_[e.to] = level_[e.from] + 1;
            q.push(e.to);
          }
        }
      }
      return level_[t] != 0;
    }

    void dfs(std::vector<edge *> &path, T &flow, int cur, int t) {
      if (cur == t) {
        T f = std::numeric_limits<T>::max();

        for (auto e : path) {
          f = std::min(f, (*e).cap);
        }

        for (auto e : path) {
          (*e).cap -= f;
          g_[e->to][e->rev].cap += f;
        }

        flow += f;
      } else {
        for (auto &e : g_[cur]) {
          if (e.cap > 0 and level_[e.to] > level_[e.from]) {
            path.emplace_back(&e);
            dfs(path, flow, e.to, t);
            path.pop_back();
          }
        }
      }
    }

  public:
    dinic() {}
    dinic(int size) : size_(size), g_(size), level_(size) {}

    void add_edge(int from, int to, T c) {
      assert(0 <= from and from < size_);
      assert(0 <= to and to < size_);
      g_[from].emplace_back(from, to, (int) g_[to].size(), c, false);
      g_[to].emplace_back(to, from, (int) g_[from].size() - 1, 0, true);
    }

    T max_flow(int s, int t) {
      assert(0 <= s and s < size_);
      assert(0 <= t and t < size_);

      T f = 0;
      while (build_level(s, t)) {
        T a = 0;
        std::vector<edge *> path;
        dfs(path, a, s, t);
        f += a;
      }
      return f;
    }

    std::vector<edge> edges() const {
      std::vector<edge> ret;
      for (auto &v : g_) ret.insert(ret.end(), v.begin(), v.end());
      return ret;
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/Graph/Flow/dinic.cpp"
#include <algorithm>
#include <cassert>
#include <queue>
#include <utility>
#include <vector>

namespace haar_lib {
  namespace dinic_impl {
    template <typename T>
    struct edge {
      int from, to, rev;
      T cap;
      bool is_rev;
      edge(int from, int to, int rev, T cap, bool is_rev) : from(from), to(to), rev(rev), cap(cap), is_rev(is_rev) {}
    };
  }  // namespace dinic_impl

  template <typename T>
  class dinic {
  public:
    using edge          = dinic_impl::edge<T>;
    using capacity_type = T;

  private:
    int size_;
    std::vector<std::vector<edge>> g_;
    std::vector<int> level_;

    bool build_level(int s, int t) {
      std::fill(level_.begin(), level_.end(), 0);
      level_[s] = 1;
      std::queue<int> q;
      q.push(s);
      while (not q.empty()) {
        int cur = q.front();
        q.pop();
        for (auto &e : g_[cur]) {
          if (level_[e.to] == 0 and e.cap > 0) {
            level_[e.to] = level_[e.from] + 1;
            q.push(e.to);
          }
        }
      }
      return level_[t] != 0;
    }

    void dfs(std::vector<edge *> &path, T &flow, int cur, int t) {
      if (cur == t) {
        T f = std::numeric_limits<T>::max();

        for (auto e : path) {
          f = std::min(f, (*e).cap);
        }

        for (auto e : path) {
          (*e).cap -= f;
          g_[e->to][e->rev].cap += f;
        }

        flow += f;
      } else {
        for (auto &e : g_[cur]) {
          if (e.cap > 0 and level_[e.to] > level_[e.from]) {
            path.emplace_back(&e);
            dfs(path, flow, e.to, t);
            path.pop_back();
          }
        }
      }
    }

  public:
    dinic() {}
    dinic(int size) : size_(size), g_(size), level_(size) {}

    void add_edge(int from, int to, T c) {
      assert(0 <= from and from < size_);
      assert(0 <= to and to < size_);
      g_[from].emplace_back(from, to, (int) g_[to].size(), c, false);
      g_[to].emplace_back(to, from, (int) g_[from].size() - 1, 0, true);
    }

    T max_flow(int s, int t) {
      assert(0 <= s and s < size_);
      assert(0 <= t and t < size_);

      T f = 0;
      while (build_level(s, t)) {
        T a = 0;
        std::vector<edge *> path;
        dfs(path, a, s, t);
        f += a;
      }
      return f;
    }

    std::vector<edge> edges() const {
      std::vector<edge> ret;
      for (auto &v : g_) ret.insert(ret.end(), v.begin(), v.end());
      return ret;
    }
  };
}  // namespace haar_lib
Back to top page