#pragma once #include <queue> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> class pseudo_tree { int n_; std::vector<bool> in_loop_; std::vector<int> group_; void dfs(int cur, int par, const graph<T> &g) { group_[cur] = group_[par]; for (auto &e : g[cur]) { if (e.to == par) continue; dfs(e.to, cur, g); } } public: pseudo_tree() {} pseudo_tree(const graph<T> &g) : n_(g.size()), in_loop_(n_, true), group_(n_) { std::vector<int> indeg(n_); std::vector<bool> visited(n_); std::queue<int> q; for (int i = 0; i < n_; ++i) { for (auto &e : g[i]) { ++indeg[e.to]; } } for (int i = 0; i < n_; ++i) { if (indeg[i] == 1) { q.push(i); } } while (not q.empty()) { int cur = q.front(); q.pop(); in_loop_[cur] = false; if (visited[cur]) continue; visited[cur] = true; for (auto &e : g[cur]) { if (not visited[e.to]) { --indeg[e.to]; if (indeg[e.to] == 1) { q.push(e.to); } } } } for (int i = 0; i < n_; ++i) { if (in_loop_[i]) { group_[i] = i; for (auto &e : g[i]) { if (not in_loop_[e.to]) { dfs(e.to, i, g); } } } } } bool in_loop(int i) const { return in_loop_[i]; } int group(int i) const { return group_[i]; } }; } // namespace haar_lib
#line 2 "Mylib/Graph/GraphUtils/decompose_pseudotree.cpp" #include <queue> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 5 "Mylib/Graph/GraphUtils/decompose_pseudotree.cpp" namespace haar_lib { template <typename T> class pseudo_tree { int n_; std::vector<bool> in_loop_; std::vector<int> group_; void dfs(int cur, int par, const graph<T> &g) { group_[cur] = group_[par]; for (auto &e : g[cur]) { if (e.to == par) continue; dfs(e.to, cur, g); } } public: pseudo_tree() {} pseudo_tree(const graph<T> &g) : n_(g.size()), in_loop_(n_, true), group_(n_) { std::vector<int> indeg(n_); std::vector<bool> visited(n_); std::queue<int> q; for (int i = 0; i < n_; ++i) { for (auto &e : g[i]) { ++indeg[e.to]; } } for (int i = 0; i < n_; ++i) { if (indeg[i] == 1) { q.push(i); } } while (not q.empty()) { int cur = q.front(); q.pop(); in_loop_[cur] = false; if (visited[cur]) continue; visited[cur] = true; for (auto &e : g[cur]) { if (not visited[e.to]) { --indeg[e.to]; if (indeg[e.to] == 1) { q.push(e.to); } } } } for (int i = 0; i < n_; ++i) { if (in_loop_[i]) { group_[i] = i; for (auto &e : g[i]) { if (not in_loop_[e.to]) { dfs(e.to, i, g); } } } } } bool in_loop(int i) const { return in_loop_[i]; } int group(int i) const { return group_[i]; } }; } // namespace haar_lib