#pragma once #include <stack> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { namespace two_edge_connected_components_impl { template <typename T> int dfs( const graph<T> &g, int cur, int par, std::vector<int> &low, std::vector<int> &order, std::vector<std::vector<int>> &ret, std::stack<int> &st, int &v) { if (order[cur] != -1) return order[cur]; order[cur] = v; int temp = v++; st.push(cur); int count = 0; for (const auto &e : g[cur]) { if (e.to == par) { ++count; if (count == 1) continue; } const int t = dfs(g, e.to, cur, low, order, ret, st, v); temp = std::min(temp, t); if (low[e.to] > order[cur]) { // e is a bridge std::vector<int> cc; while (true) { int c = st.top(); cc.emplace_back(c); st.pop(); if (c == e.to) break; } ret.emplace_back(cc); } } return low[cur] = temp; } } // namespace two_edge_connected_components_impl template <typename T> auto two_edge_connected_components(const graph<T> &g) { const int n = g.size(); std::vector<int> low(n, -1), order(n, -1); std::vector<std::vector<int>> ret; std::stack<int> st; int v = 0; for (int i = 0; i < n; ++i) { if (order[i] == -1) { two_edge_connected_components_impl::dfs(g, i, -1, low, order, ret, st, v); if (not st.empty()) { std::vector<int> cc; while (not st.empty()) cc.emplace_back(st.top()), st.pop(); ret.emplace_back(cc); } } } return ret; } } // namespace haar_lib
#line 2 "Mylib/Graph/GraphUtils/two_edge_connected_components.cpp" #include <stack> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 5 "Mylib/Graph/GraphUtils/two_edge_connected_components.cpp" namespace haar_lib { namespace two_edge_connected_components_impl { template <typename T> int dfs( const graph<T> &g, int cur, int par, std::vector<int> &low, std::vector<int> &order, std::vector<std::vector<int>> &ret, std::stack<int> &st, int &v) { if (order[cur] != -1) return order[cur]; order[cur] = v; int temp = v++; st.push(cur); int count = 0; for (const auto &e : g[cur]) { if (e.to == par) { ++count; if (count == 1) continue; } const int t = dfs(g, e.to, cur, low, order, ret, st, v); temp = std::min(temp, t); if (low[e.to] > order[cur]) { // e is a bridge std::vector<int> cc; while (true) { int c = st.top(); cc.emplace_back(c); st.pop(); if (c == e.to) break; } ret.emplace_back(cc); } } return low[cur] = temp; } } // namespace two_edge_connected_components_impl template <typename T> auto two_edge_connected_components(const graph<T> &g) { const int n = g.size(); std::vector<int> low(n, -1), order(n, -1); std::vector<std::vector<int>> ret; std::stack<int> st; int v = 0; for (int i = 0; i < n; ++i) { if (order[i] == -1) { two_edge_connected_components_impl::dfs(g, i, -1, low, order, ret, st, v); if (not st.empty()) { std::vector<int> cc; while (not st.empty()) cc.emplace_back(st.top()), st.pop(); ret.emplace_back(cc); } } } return ret; } } // namespace haar_lib