HopcroftKarp(L, R)
add_edge(i, j)
solve()
get_matching()
#pragma once #include <cassert> #include <queue> #include <utility> #include <vector> namespace haar_lib { class hopcroft_karp { struct edge { int from, to; int rev; bool used; }; int L_, R_, N_; std::vector<std::vector<edge>> g_; std::vector<int> dist_; bool bfs() { dist_.assign(N_, -1); std::queue<int> q; q.push(0); dist_[0] = 0; while (not q.empty()) { int i = q.front(); q.pop(); for (auto &e : g_[i]) { if (not e.used and dist_[e.to] == -1) { dist_[e.to] = dist_[i] + 1; q.push(e.to); } } } return dist_[N_ - 1] != -1; } bool dfs(int cur) { if (cur == N_ - 1) return true; for (auto &e : g_[cur]) { if (not e.used and dist_[cur] + 1 == dist_[e.to]) { if (dfs(e.to)) { e.used = true; if (e.rev >= 0) g_[e.to][e.rev].used = false; return true; } } } return false; } public: hopcroft_karp() {} hopcroft_karp(int L, int R) : L_(L), R_(R), N_(L + R + 2), g_(N_), dist_(N_) { for (int i = 0; i < L_; ++i) { g_[0].push_back((edge){0, i + 1, -1, false}); } for (int i = 0; i < R_; ++i) { g_[i + L_ + 1].push_back((edge){i + L_ + 1, N_ - 1, -1, false}); } } void add_edge(int i, int j) { assert(0 <= i and i < L_); assert(0 <= j and j < R_); const int x = i + 1; const int y = j + L_ + 1; g_[x].push_back((edge){x, y, (int) g_[y].size(), false}); g_[y].push_back((edge){y, x, (int) g_[x].size() - 1, true}); } int match() { int ret = 0; while (bfs()) { int flow = 0; for (int i = 0; i < L_; ++i) { auto &e = g_[0][i]; if (not e.used and dfs(e.to)) { e.used = true; ++flow; } } if (flow == 0) break; ret += flow; } return ret; } auto get_matching() { std::vector<std::pair<int, int>> ret; for (int i = 0; i < L_; ++i) { for (auto &e : g_[i + 1]) { if (e.used) ret.emplace_back(i, e.to - L_ - 1); } } return ret; } }; } // namespace haar_lib
#line 2 "Mylib/Graph/Matching/hopcroft_karp.cpp" #include <cassert> #include <queue> #include <utility> #include <vector> namespace haar_lib { class hopcroft_karp { struct edge { int from, to; int rev; bool used; }; int L_, R_, N_; std::vector<std::vector<edge>> g_; std::vector<int> dist_; bool bfs() { dist_.assign(N_, -1); std::queue<int> q; q.push(0); dist_[0] = 0; while (not q.empty()) { int i = q.front(); q.pop(); for (auto &e : g_[i]) { if (not e.used and dist_[e.to] == -1) { dist_[e.to] = dist_[i] + 1; q.push(e.to); } } } return dist_[N_ - 1] != -1; } bool dfs(int cur) { if (cur == N_ - 1) return true; for (auto &e : g_[cur]) { if (not e.used and dist_[cur] + 1 == dist_[e.to]) { if (dfs(e.to)) { e.used = true; if (e.rev >= 0) g_[e.to][e.rev].used = false; return true; } } } return false; } public: hopcroft_karp() {} hopcroft_karp(int L, int R) : L_(L), R_(R), N_(L + R + 2), g_(N_), dist_(N_) { for (int i = 0; i < L_; ++i) { g_[0].push_back((edge){0, i + 1, -1, false}); } for (int i = 0; i < R_; ++i) { g_[i + L_ + 1].push_back((edge){i + L_ + 1, N_ - 1, -1, false}); } } void add_edge(int i, int j) { assert(0 <= i and i < L_); assert(0 <= j and j < R_); const int x = i + 1; const int y = j + L_ + 1; g_[x].push_back((edge){x, y, (int) g_[y].size(), false}); g_[y].push_back((edge){y, x, (int) g_[x].size() - 1, true}); } int match() { int ret = 0; while (bfs()) { int flow = 0; for (int i = 0; i < L_; ++i) { auto &e = g_[0][i]; if (not e.used and dfs(e.to)) { e.used = true; ++flow; } } if (flow == 0) break; ret += flow; } return ret; } auto get_matching() { std::vector<std::pair<int, int>> ret; for (int i = 0; i < L_; ++i) { for (auto &e : g_[i + 1]) { if (e.used) ret.emplace_back(i, e.to - L_ - 1); } } return ret; } }; } // namespace haar_lib