chu_liu_edmonds(g, r)
r
g
#pragma once #include <algorithm> #include <vector> #include "Mylib/Graph/GraphUtils/strongly_connected_components.cpp" #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { namespace chu_liu_edmonds_impl { template <typename T> graph<T> rec(graph<T> g, int r) { const int N = g.size(); graph<T> in_edges(N); for (int i = 0; i < N; ++i) { if (i != r) { auto e = *std::min_element( g[i].begin(), g[i].end(), [](const auto &a, const auto &b) { return a.cost < b.cost; }); in_edges[i].push_back(e); } } const auto [s, m] = strongly_connected_components(in_edges); std::vector<std::vector<int>> v(m); for (int i = 0; i < N; ++i) { v[s[i]].push_back(i); } int count_cycle = 0; for (int i = 0; i < m; ++i) { if (v[i].size() > 1) { for (int j : v[i]) { auto c = *std::min_element( g[j].begin(), g[j].end(), [](const auto &a, const auto &b) { return a.cost < b.cost; }); for (auto &e : g[j]) { e.cost -= c.cost; } } ++count_cycle; } } if (count_cycle == 0) { return in_edges; } graph<T> G(m); const int R = s[r]; for (int i = 0; i < N; ++i) { for (auto &e : g[i]) { if (s[e.from] == s[e.to]) continue; G.add_edge(s[e.from], s[e.to], e.cost); } } auto res = rec(G, R); for (int i = 0; i < m; ++i) { if (i == R) continue; int j = res[i][0].to; std::vector<edge<T>> c; for (int x : v[i]) { for (auto &e : g[x]) { if (s[e.to] == j) { c.push_back(e); } } } auto e = *std::min_element( c.begin(), c.end(), [](const auto &a, const auto &b) { return a.cost < b.cost; }); in_edges[e.from][0] = e; } return in_edges; } } // namespace chu_liu_edmonds_impl template <typename T> auto chu_liu_edmonds(graph<T> g, int r) { std::vector<edge<T>> ret; const int N = g.size(); graph<T> rg(N); for (int i = 0; i < N; ++i) { for (auto &e : g[i]) { rg.add_edge(e.to, e.from, e.cost); } } auto res = chu_liu_edmonds_impl::rec(rg, r); for (int i = 0; i < N; ++i) { if (i != r) { std::vector<T> c; for (auto &e : rg[i]) { if (e.to == res[i][0].to) { c.push_back(e.cost); } } ret.emplace_back(res[i][0].to, i, *std::min_element(c.begin(), c.end())); } } return ret; } } // namespace haar_lib
#line 2 "Mylib/Graph/MinimumSpanningTree/chu_liu_edmonds.cpp" #include <algorithm> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 5 "Mylib/Graph/GraphUtils/strongly_connected_components.cpp" namespace haar_lib { template <typename T> auto strongly_connected_components(const graph<T> &g) { const int n = g.size(); std::vector<int> ret(n), low(n, -1), ord(n, -1), S; std::vector<bool> check(n); S.reserve(n); int t = 0; int k = 0; auto dfs = [&](auto &dfs, int cur) -> void { low[cur] = ord[cur] = t++; S.push_back(cur); check[cur] = true; for (auto &e : g[cur]) { if (ord[e.to] == -1) { dfs(dfs, e.to); low[cur] = std::min(low[cur], low[e.to]); } else if (check[e.to]) { low[cur] = std::min(low[cur], low[e.to]); } } if (low[cur] == ord[cur]) { while (true) { int u = S.back(); S.pop_back(); check[u] = false; ret[u] = k; if (cur == u) break; } ++k; } }; for (int i = 0; i < n; ++i) { if (ord[i] == -1) { t = 0; dfs(dfs, i); } } for (auto &x : ret) x = k - 1 - x; return std::make_pair(ret, k); } } // namespace haar_lib #line 6 "Mylib/Graph/MinimumSpanningTree/chu_liu_edmonds.cpp" namespace haar_lib { namespace chu_liu_edmonds_impl { template <typename T> graph<T> rec(graph<T> g, int r) { const int N = g.size(); graph<T> in_edges(N); for (int i = 0; i < N; ++i) { if (i != r) { auto e = *std::min_element( g[i].begin(), g[i].end(), [](const auto &a, const auto &b) { return a.cost < b.cost; }); in_edges[i].push_back(e); } } const auto [s, m] = strongly_connected_components(in_edges); std::vector<std::vector<int>> v(m); for (int i = 0; i < N; ++i) { v[s[i]].push_back(i); } int count_cycle = 0; for (int i = 0; i < m; ++i) { if (v[i].size() > 1) { for (int j : v[i]) { auto c = *std::min_element( g[j].begin(), g[j].end(), [](const auto &a, const auto &b) { return a.cost < b.cost; }); for (auto &e : g[j]) { e.cost -= c.cost; } } ++count_cycle; } } if (count_cycle == 0) { return in_edges; } graph<T> G(m); const int R = s[r]; for (int i = 0; i < N; ++i) { for (auto &e : g[i]) { if (s[e.from] == s[e.to]) continue; G.add_edge(s[e.from], s[e.to], e.cost); } } auto res = rec(G, R); for (int i = 0; i < m; ++i) { if (i == R) continue; int j = res[i][0].to; std::vector<edge<T>> c; for (int x : v[i]) { for (auto &e : g[x]) { if (s[e.to] == j) { c.push_back(e); } } } auto e = *std::min_element( c.begin(), c.end(), [](const auto &a, const auto &b) { return a.cost < b.cost; }); in_edges[e.from][0] = e; } return in_edges; } } // namespace chu_liu_edmonds_impl template <typename T> auto chu_liu_edmonds(graph<T> g, int r) { std::vector<edge<T>> ret; const int N = g.size(); graph<T> rg(N); for (int i = 0; i < N; ++i) { for (auto &e : g[i]) { rg.add_edge(e.to, e.from, e.cost); } } auto res = chu_liu_edmonds_impl::rec(rg, r); for (int i = 0; i < N; ++i) { if (i != r) { std::vector<T> c; for (auto &e : rg[i]) { if (e.to == res[i][0].to) { c.push_back(e.cost); } } ret.emplace_back(res[i][0].to, i, *std::min_element(c.begin(), c.end())); } } return ret; } } // namespace haar_lib