kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: Chu-Liu/Edmonds algorithm
(Mylib/Graph/MinimumSpanningTree/chu_liu_edmonds.cpp)

Operations

Requirements

Notes

Problems

References

Depends on

Verified with

Code

#pragma once
#include <algorithm>
#include <vector>
#include "Mylib/Graph/GraphUtils/strongly_connected_components.cpp"
#include "Mylib/Graph/Template/graph.cpp"

namespace haar_lib {
  namespace chu_liu_edmonds_impl {
    template <typename T>
    graph<T> rec(graph<T> g, int r) {
      const int N = g.size();

      graph<T> in_edges(N);

      for (int i = 0; i < N; ++i) {
        if (i != r) {
          auto e = *std::min_element(
              g[i].begin(), g[i].end(),
              [](const auto &a, const auto &b) {
                return a.cost < b.cost;
              });

          in_edges[i].push_back(e);
        }
      }

      const auto [s, m] = strongly_connected_components(in_edges);

      std::vector<std::vector<int>> v(m);
      for (int i = 0; i < N; ++i) {
        v[s[i]].push_back(i);
      }

      int count_cycle = 0;
      for (int i = 0; i < m; ++i) {
        if (v[i].size() > 1) {
          for (int j : v[i]) {
            auto c =
                *std::min_element(
                    g[j].begin(), g[j].end(),
                    [](const auto &a, const auto &b) { return a.cost < b.cost; });

            for (auto &e : g[j]) {
              e.cost -= c.cost;
            }
          }
          ++count_cycle;
        }
      }

      if (count_cycle == 0) {
        return in_edges;
      }

      graph<T> G(m);
      const int R = s[r];
      for (int i = 0; i < N; ++i) {
        for (auto &e : g[i]) {
          if (s[e.from] == s[e.to]) continue;
          G.add_edge(s[e.from], s[e.to], e.cost);
        }
      }

      auto res = rec(G, R);

      for (int i = 0; i < m; ++i) {
        if (i == R) continue;

        int j = res[i][0].to;

        std::vector<edge<T>> c;

        for (int x : v[i]) {
          for (auto &e : g[x]) {
            if (s[e.to] == j) {
              c.push_back(e);
            }
          }
        }

        auto e =
            *std::min_element(
                c.begin(), c.end(),
                [](const auto &a, const auto &b) { return a.cost < b.cost; });

        in_edges[e.from][0] = e;
      }

      return in_edges;
    }
  }  // namespace chu_liu_edmonds_impl

  template <typename T>
  auto chu_liu_edmonds(graph<T> g, int r) {
    std::vector<edge<T>> ret;

    const int N = g.size();

    graph<T> rg(N);
    for (int i = 0; i < N; ++i) {
      for (auto &e : g[i]) {
        rg.add_edge(e.to, e.from, e.cost);
      }
    }

    auto res = chu_liu_edmonds_impl::rec(rg, r);

    for (int i = 0; i < N; ++i) {
      if (i != r) {
        std::vector<T> c;

        for (auto &e : rg[i]) {
          if (e.to == res[i][0].to) {
            c.push_back(e.cost);
          }
        }

        ret.emplace_back(res[i][0].to, i, *std::min_element(c.begin(), c.end()));
      }
    }

    return ret;
  }
}  // namespace haar_lib
#line 2 "Mylib/Graph/MinimumSpanningTree/chu_liu_edmonds.cpp"
#include <algorithm>
#include <vector>
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"

namespace haar_lib {
  template <typename T>
  struct edge {
    int from, to;
    T cost;
    int index = -1;
    edge() {}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
  };

  template <typename T>
  struct graph {
    using weight_type = T;
    using edge_type   = edge<T>;

    std::vector<std::vector<edge<T>>> data;

    auto& operator[](size_t i) { return data[i]; }
    const auto& operator[](size_t i) const { return data[i]; }

    auto begin() const { return data.begin(); }
    auto end() const { return data.end(); }

    graph() {}
    graph(int N) : data(N) {}

    bool empty() const { return data.empty(); }
    int size() const { return data.size(); }

    void add_edge(int i, int j, T w, int index = -1) {
      data[i].emplace_back(i, j, w, index);
    }

    void add_undirected(int i, int j, T w, int index = -1) {
      add_edge(i, j, w, index);
      add_edge(j, i, w, index);
    }

    template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
    void read(int M) {
      for (int i = 0; i < M; ++i) {
        int u, v;
        std::cin >> u >> v;
        u -= I;
        v -= I;
        T w = 1;
        if (WEIGHTED) std::cin >> w;
        if (DIRECTED)
          add_edge(u, v, w, i);
        else
          add_undirected(u, v, w, i);
      }
    }
  };

  template <typename T>
  using tree = graph<T>;
}  // namespace haar_lib
#line 5 "Mylib/Graph/GraphUtils/strongly_connected_components.cpp"

namespace haar_lib {
  template <typename T>
  auto strongly_connected_components(const graph<T> &g) {
    const int n = g.size();

    std::vector<int> ret(n), low(n, -1), ord(n, -1), S;
    std::vector<bool> check(n);
    S.reserve(n);
    int t = 0;
    int k = 0;

    auto dfs =
        [&](auto &dfs, int cur) -> void {
      low[cur] = ord[cur] = t++;
      S.push_back(cur);
      check[cur] = true;

      for (auto &e : g[cur]) {
        if (ord[e.to] == -1) {
          dfs(dfs, e.to);
          low[cur] = std::min(low[cur], low[e.to]);
        } else if (check[e.to]) {
          low[cur] = std::min(low[cur], low[e.to]);
        }
      }

      if (low[cur] == ord[cur]) {
        while (true) {
          int u = S.back();
          S.pop_back();
          check[u] = false;
          ret[u]   = k;
          if (cur == u) break;
        }
        ++k;
      }
    };

    for (int i = 0; i < n; ++i) {
      if (ord[i] == -1) {
        t = 0;
        dfs(dfs, i);
      }
    }

    for (auto &x : ret) x = k - 1 - x;

    return std::make_pair(ret, k);
  }
}  // namespace haar_lib
#line 6 "Mylib/Graph/MinimumSpanningTree/chu_liu_edmonds.cpp"

namespace haar_lib {
  namespace chu_liu_edmonds_impl {
    template <typename T>
    graph<T> rec(graph<T> g, int r) {
      const int N = g.size();

      graph<T> in_edges(N);

      for (int i = 0; i < N; ++i) {
        if (i != r) {
          auto e = *std::min_element(
              g[i].begin(), g[i].end(),
              [](const auto &a, const auto &b) {
                return a.cost < b.cost;
              });

          in_edges[i].push_back(e);
        }
      }

      const auto [s, m] = strongly_connected_components(in_edges);

      std::vector<std::vector<int>> v(m);
      for (int i = 0; i < N; ++i) {
        v[s[i]].push_back(i);
      }

      int count_cycle = 0;
      for (int i = 0; i < m; ++i) {
        if (v[i].size() > 1) {
          for (int j : v[i]) {
            auto c =
                *std::min_element(
                    g[j].begin(), g[j].end(),
                    [](const auto &a, const auto &b) { return a.cost < b.cost; });

            for (auto &e : g[j]) {
              e.cost -= c.cost;
            }
          }
          ++count_cycle;
        }
      }

      if (count_cycle == 0) {
        return in_edges;
      }

      graph<T> G(m);
      const int R = s[r];
      for (int i = 0; i < N; ++i) {
        for (auto &e : g[i]) {
          if (s[e.from] == s[e.to]) continue;
          G.add_edge(s[e.from], s[e.to], e.cost);
        }
      }

      auto res = rec(G, R);

      for (int i = 0; i < m; ++i) {
        if (i == R) continue;

        int j = res[i][0].to;

        std::vector<edge<T>> c;

        for (int x : v[i]) {
          for (auto &e : g[x]) {
            if (s[e.to] == j) {
              c.push_back(e);
            }
          }
        }

        auto e =
            *std::min_element(
                c.begin(), c.end(),
                [](const auto &a, const auto &b) { return a.cost < b.cost; });

        in_edges[e.from][0] = e;
      }

      return in_edges;
    }
  }  // namespace chu_liu_edmonds_impl

  template <typename T>
  auto chu_liu_edmonds(graph<T> g, int r) {
    std::vector<edge<T>> ret;

    const int N = g.size();

    graph<T> rg(N);
    for (int i = 0; i < N; ++i) {
      for (auto &e : g[i]) {
        rg.add_edge(e.to, e.from, e.cost);
      }
    }

    auto res = chu_liu_edmonds_impl::rec(rg, r);

    for (int i = 0; i < N; ++i) {
      if (i != r) {
        std::vector<T> c;

        for (auto &e : rg[i]) {
          if (e.to == res[i][0].to) {
            c.push_back(e.cost);
          }
        }

        ret.emplace_back(res[i][0].to, i, *std::min_element(c.begin(), c.end()));
      }
    }

    return ret;
  }
}  // namespace haar_lib
Back to top page