#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <utility>
#include <vector>
#include "Mylib/AlgebraicStructure/Monoid/min.cpp"
#include "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T, typename MST>
std::vector<edge<T>> manhattan_minimum_spanning_tree(std::vector<T> x, std::vector<T> y, MST mst) {
const int N = x.size();
graph<T> g(N);
segment_tree<min_monoid<std::pair<T, int>>> seg(N);
auto f =
[&]() {
std::vector<T> Y(y);
std::sort(Y.begin(), Y.end());
Y.erase(std::unique(Y.begin(), Y.end()), Y.end());
seg.init(std::nullopt);
std::vector<int> ord(N);
std::iota(ord.begin(), ord.end(), 0);
std::sort(
ord.begin(), ord.end(),
[&](int i, int j) {
if (y[i] - x[i] == y[j] - x[j]) return x[i] > x[j];
return y[i] - x[i] < y[j] - x[j];
});
for (int i : ord) {
int lb = std::lower_bound(Y.begin(), Y.end(), y[i]) - Y.begin();
if (auto res = seg.fold(lb, N); res) {
auto j = res->second;
T c = std::abs(x[i] - x[j]) + std::abs(y[i] - y[j]);
g.add_edge(i, j, c);
}
if (auto res = seg[lb]; not res or x[i] + y[i] < res->first) {
seg.set(lb, {{x[i] + y[i], i}});
}
}
};
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 2; ++k) {
f();
for (int l = 0; l < N; ++l) std::swap(x[l], y[l]);
}
for (int l = 0; l < N; ++l) x[l] = -x[l];
}
for (int l = 0; l < N; ++l) y[l] = -y[l];
}
return mst(g);
}
} // namespace haar_lib
#line 2 "Mylib/Graph/MinimumSpanningTree/manhattan_minimum_spanning_tree.cpp"
#include <algorithm>
#include <cmath>
#include <numeric>
#include <utility>
#include <vector>
#line 3 "Mylib/AlgebraicStructure/Monoid/min.cpp"
#include <optional>
namespace haar_lib {
template <typename T>
struct min_monoid {
using value_type = std::optional<T>;
value_type operator()() const { return {}; }
value_type operator()(const value_type &a, const value_type &b) const {
if (not a) return b;
if (not b) return a;
return {std::min(*a, *b)};
}
};
} // namespace haar_lib
#line 3 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include <cassert>
#include <functional>
#line 6 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
namespace haar_lib {
template <typename Monoid>
class segment_tree {
public:
using value_type = typename Monoid::value_type;
private:
Monoid M_;
int depth_, size_, hsize_;
std::vector<value_type> data_;
public:
segment_tree() {}
segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
size_(1 << depth_),
hsize_(size_ / 2),
data_(size_, M_()) {}
auto operator[](int i) const {
assert(0 <= i and i < hsize_);
return data_[hsize_ + i];
}
auto fold(int l, int r) const {
assert(0 <= l and l <= r and r <= hsize_);
value_type ret_left = M_();
value_type ret_right = M_();
int L = l + hsize_, R = r + hsize_;
while (L < R) {
if (R & 1) ret_right = M_(data_[--R], ret_right);
if (L & 1) ret_left = M_(ret_left, data_[L++]);
L >>= 1, R >>= 1;
}
return M_(ret_left, ret_right);
}
auto fold_all() const {
return data_[1];
}
void set(int i, const value_type &x) {
assert(0 <= i and i < hsize_);
i += hsize_;
data_[i] = x;
while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
void update(int i, const value_type &x) {
assert(0 <= i and i < hsize_);
i += hsize_;
data_[i] = M_(data_[i], x);
while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
template <typename T>
void init_with_vector(const std::vector<T> &val) {
data_.assign(size_, M_());
for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i];
for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
template <typename T>
void init(const T &val) {
init_with_vector(std::vector<value_type>(hsize_, val));
}
private:
template <bool Lower, typename F>
int bound(const int l, const int r, value_type x, F f) const {
std::vector<int> pl, pr;
int L = l + hsize_;
int R = r + hsize_;
while (L < R) {
if (R & 1) pr.push_back(--R);
if (L & 1) pl.push_back(L++);
L >>= 1, R >>= 1;
}
std::reverse(pr.begin(), pr.end());
pl.insert(pl.end(), pr.begin(), pr.end());
value_type a = M_();
for (int i : pl) {
auto b = M_(a, data_[i]);
if ((Lower and not f(b, x)) or (not Lower and f(x, b))) {
while (i < hsize_) {
const auto c = M_(a, data_[i << 1 | 0]);
if ((Lower and not f(c, x)) or (not Lower and f(x, c))) {
i = i << 1 | 0;
} else {
a = c;
i = i << 1 | 1;
}
}
return i - hsize_;
}
a = b;
}
return r;
}
public:
template <typename F = std::less<value_type>>
int lower_bound(int l, int r, value_type x, F f = F()) const {
return bound<true>(l, r, x, f);
}
template <typename F = std::less<value_type>>
int upper_bound(int l, int r, value_type x, F f = F()) const {
return bound<false>(l, r, x, f);
}
};
} // namespace haar_lib
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 10 "Mylib/Graph/MinimumSpanningTree/manhattan_minimum_spanning_tree.cpp"
namespace haar_lib {
template <typename T, typename MST>
std::vector<edge<T>> manhattan_minimum_spanning_tree(std::vector<T> x, std::vector<T> y, MST mst) {
const int N = x.size();
graph<T> g(N);
segment_tree<min_monoid<std::pair<T, int>>> seg(N);
auto f =
[&]() {
std::vector<T> Y(y);
std::sort(Y.begin(), Y.end());
Y.erase(std::unique(Y.begin(), Y.end()), Y.end());
seg.init(std::nullopt);
std::vector<int> ord(N);
std::iota(ord.begin(), ord.end(), 0);
std::sort(
ord.begin(), ord.end(),
[&](int i, int j) {
if (y[i] - x[i] == y[j] - x[j]) return x[i] > x[j];
return y[i] - x[i] < y[j] - x[j];
});
for (int i : ord) {
int lb = std::lower_bound(Y.begin(), Y.end(), y[i]) - Y.begin();
if (auto res = seg.fold(lb, N); res) {
auto j = res->second;
T c = std::abs(x[i] - x[j]) + std::abs(y[i] - y[j]);
g.add_edge(i, j, c);
}
if (auto res = seg[lb]; not res or x[i] + y[i] < res->first) {
seg.set(lb, {{x[i] + y[i], i}});
}
}
};
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 2; ++k) {
f();
for (int l = 0; l < N; ++l) std::swap(x[l], y[l]);
}
for (int l = 0; l < N; ++l) x[l] = -x[l];
}
for (int l = 0; l < N; ++l) y[l] = -y[l];
}
return mst(g);
}
} // namespace haar_lib