#pragma once #include <algorithm> #include <cmath> #include <numeric> #include <utility> #include <vector> #include "Mylib/AlgebraicStructure/Monoid/min.cpp" #include "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T, typename MST> std::vector<edge<T>> manhattan_minimum_spanning_tree(std::vector<T> x, std::vector<T> y, MST mst) { const int N = x.size(); graph<T> g(N); segment_tree<min_monoid<std::pair<T, int>>> seg(N); auto f = [&]() { std::vector<T> Y(y); std::sort(Y.begin(), Y.end()); Y.erase(std::unique(Y.begin(), Y.end()), Y.end()); seg.init(std::nullopt); std::vector<int> ord(N); std::iota(ord.begin(), ord.end(), 0); std::sort( ord.begin(), ord.end(), [&](int i, int j) { if (y[i] - x[i] == y[j] - x[j]) return x[i] > x[j]; return y[i] - x[i] < y[j] - x[j]; }); for (int i : ord) { int lb = std::lower_bound(Y.begin(), Y.end(), y[i]) - Y.begin(); if (auto res = seg.fold(lb, N); res) { auto j = res->second; T c = std::abs(x[i] - x[j]) + std::abs(y[i] - y[j]); g.add_edge(i, j, c); } if (auto res = seg[lb]; not res or x[i] + y[i] < res->first) { seg.set(lb, {{x[i] + y[i], i}}); } } }; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 2; ++k) { f(); for (int l = 0; l < N; ++l) std::swap(x[l], y[l]); } for (int l = 0; l < N; ++l) x[l] = -x[l]; } for (int l = 0; l < N; ++l) y[l] = -y[l]; } return mst(g); } } // namespace haar_lib
#line 2 "Mylib/Graph/MinimumSpanningTree/manhattan_minimum_spanning_tree.cpp" #include <algorithm> #include <cmath> #include <numeric> #include <utility> #include <vector> #line 3 "Mylib/AlgebraicStructure/Monoid/min.cpp" #include <optional> namespace haar_lib { template <typename T> struct min_monoid { using value_type = std::optional<T>; value_type operator()() const { return {}; } value_type operator()(const value_type &a, const value_type &b) const { if (not a) return b; if (not b) return a; return {std::min(*a, *b)}; } }; } // namespace haar_lib #line 3 "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include <cassert> #include <functional> #line 6 "Mylib/DataStructure/SegmentTree/segment_tree.cpp" namespace haar_lib { template <typename Monoid> class segment_tree { public: using value_type = typename Monoid::value_type; private: Monoid M_; int depth_, size_, hsize_; std::vector<value_type> data_; public: segment_tree() {} segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_()) {} auto operator[](int i) const { assert(0 <= i and i < hsize_); return data_[hsize_ + i]; } auto fold(int l, int r) const { assert(0 <= l and l <= r and r <= hsize_); value_type ret_left = M_(); value_type ret_right = M_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) ret_right = M_(data_[--R], ret_right); if (L & 1) ret_left = M_(ret_left, data_[L++]); L >>= 1, R >>= 1; } return M_(ret_left, ret_right); } auto fold_all() const { return data_[1]; } void set(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = x; while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } void update(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = M_(data_[i], x); while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i]; for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init(const T &val) { init_with_vector(std::vector<value_type>(hsize_, val)); } private: template <bool Lower, typename F> int bound(const int l, const int r, value_type x, F f) const { std::vector<int> pl, pr; int L = l + hsize_; int R = r + hsize_; while (L < R) { if (R & 1) pr.push_back(--R); if (L & 1) pl.push_back(L++); L >>= 1, R >>= 1; } std::reverse(pr.begin(), pr.end()); pl.insert(pl.end(), pr.begin(), pr.end()); value_type a = M_(); for (int i : pl) { auto b = M_(a, data_[i]); if ((Lower and not f(b, x)) or (not Lower and f(x, b))) { while (i < hsize_) { const auto c = M_(a, data_[i << 1 | 0]); if ((Lower and not f(c, x)) or (not Lower and f(x, c))) { i = i << 1 | 0; } else { a = c; i = i << 1 | 1; } } return i - hsize_; } a = b; } return r; } public: template <typename F = std::less<value_type>> int lower_bound(int l, int r, value_type x, F f = F()) const { return bound<true>(l, r, x, f); } template <typename F = std::less<value_type>> int upper_bound(int l, int r, value_type x, F f = F()) const { return bound<false>(l, r, x, f); } }; } // namespace haar_lib #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 10 "Mylib/Graph/MinimumSpanningTree/manhattan_minimum_spanning_tree.cpp" namespace haar_lib { template <typename T, typename MST> std::vector<edge<T>> manhattan_minimum_spanning_tree(std::vector<T> x, std::vector<T> y, MST mst) { const int N = x.size(); graph<T> g(N); segment_tree<min_monoid<std::pair<T, int>>> seg(N); auto f = [&]() { std::vector<T> Y(y); std::sort(Y.begin(), Y.end()); Y.erase(std::unique(Y.begin(), Y.end()), Y.end()); seg.init(std::nullopt); std::vector<int> ord(N); std::iota(ord.begin(), ord.end(), 0); std::sort( ord.begin(), ord.end(), [&](int i, int j) { if (y[i] - x[i] == y[j] - x[j]) return x[i] > x[j]; return y[i] - x[i] < y[j] - x[j]; }); for (int i : ord) { int lb = std::lower_bound(Y.begin(), Y.end(), y[i]) - Y.begin(); if (auto res = seg.fold(lb, N); res) { auto j = res->second; T c = std::abs(x[i] - x[j]) + std::abs(y[i] - y[j]); g.add_edge(i, j, c); } if (auto res = seg[lb]; not res or x[i] + y[i] < res->first) { seg.set(lb, {{x[i] + y[i], i}}); } } }; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 2; ++k) { f(); for (int l = 0; l < N; ++l) std::swap(x[l], y[l]); } for (int l = 0; l < N; ++l) x[l] = -x[l]; } for (int l = 0; l < N; ++l) y[l] = -y[l]; } return mst(g); } } // namespace haar_lib