#pragma once #include <functional> #include <optional> #include <queue> #include <utility> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { namespace yen_algorithm_impl { template <typename T> auto shortest_path( const graph<T> &g, int from, int t, const std::vector<bool> &usable, const std::vector<std::vector<bool>> &valid) { using Path = std::pair<T, std::vector<int>>; using P = std::pair<T, int>; const int N = g.size(); std::vector<bool> visited(N, false); std::vector<std::optional<T>> dist(N); std::vector<std::pair<int, int>> restore(N); std::priority_queue<P, std::vector<P>, std::greater<P>> pq; dist[from] = 0; pq.emplace(0, from); while (not pq.empty()) { auto [d, i] = pq.top(); pq.pop(); if (visited[i]) continue; visited[i] = true; for (int k = 0; k < (int) g[i].size(); ++k) { if (not valid[i][k] or not usable[g[i][k].to]) continue; auto &e = g[i][k]; if (not dist[e.to] or *dist[e.to] > d + e.cost) { dist[e.to] = d + e.cost; restore[e.to] = std::make_pair(i, k); if (not visited[e.to]) pq.emplace(*dist[e.to], e.to); } } } std::optional<Path> ret; if (dist[t]) { std::vector<int> p; int cur = t; while (cur != from) { auto [i, j] = restore[cur]; p.push_back(j); cur = i; } std::reverse(p.begin(), p.end()); ret = std::make_pair(*dist[t], p); } return ret; } } // namespace yen_algorithm_impl template <typename T> auto yen_algorithm(const graph<T> &g, int s, int t, int K) { using Path = std::pair<T, std::vector<int>>; const int N = g.size(); std::vector<std::vector<bool>> valid(N); std::vector<std::optional<Path>> result(K); std::priority_queue<Path, std::vector<Path>, std::greater<Path>> stock; for (int i = 0; i < N; ++i) { valid[i].assign(g[i].size(), true); } for (int i = 0; i < K; ++i) { if (i == 0) { std::vector<bool> usable(N, true); if (auto res = yen_algorithm_impl::shortest_path(g, s, t, usable, valid); res) stock.push(*res); } else { std::vector<int> prev_path; { int cur = s; for (auto u : result[i - 1]->second) { prev_path.push_back(cur); cur = g[cur][u].to; } prev_path.push_back(t); } std::vector<bool> check(i, true); std::vector<bool> usable(N, true); for (int k = 0; k < (int) prev_path.size() - 1; ++k) { const int u = prev_path[k]; for (int j = 0; j < i; ++j) { if (check[j]) { valid[prev_path[k]][result[j]->second[k]] = false; } } if (auto res = yen_algorithm_impl::shortest_path(g, u, t, usable, valid); res) { auto [c, p] = *res; std::vector<int> temp; for (int j = 0; j < k; ++j) { int v = result[i - 1]->second[j]; c += g[prev_path[j]][v].cost; temp.push_back(v); } temp.insert(temp.end(), p.begin(), p.end()); stock.emplace(c, temp); } usable[u] = false; for (int j = 0; j < i; ++j) { if (check[j]) { valid[prev_path[k]][result[j]->second[k]] = true; } } for (int j = 0; j < i; ++j) { if (check[j]) { if (prev_path[k + 1] != g[prev_path[k]][result[j]->second[k]].to) { check[j] = false; } } } } } if (stock.empty()) break; result[i] = stock.top(); stock.pop(); while (not stock.empty() and stock.top() == result[i]) { stock.pop(); } } return result; } } // namespace haar_lib
#line 2 "Mylib/Graph/ShortestPath/yen_algorithm.cpp" #include <functional> #include <optional> #include <queue> #include <utility> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 8 "Mylib/Graph/ShortestPath/yen_algorithm.cpp" namespace haar_lib { namespace yen_algorithm_impl { template <typename T> auto shortest_path( const graph<T> &g, int from, int t, const std::vector<bool> &usable, const std::vector<std::vector<bool>> &valid) { using Path = std::pair<T, std::vector<int>>; using P = std::pair<T, int>; const int N = g.size(); std::vector<bool> visited(N, false); std::vector<std::optional<T>> dist(N); std::vector<std::pair<int, int>> restore(N); std::priority_queue<P, std::vector<P>, std::greater<P>> pq; dist[from] = 0; pq.emplace(0, from); while (not pq.empty()) { auto [d, i] = pq.top(); pq.pop(); if (visited[i]) continue; visited[i] = true; for (int k = 0; k < (int) g[i].size(); ++k) { if (not valid[i][k] or not usable[g[i][k].to]) continue; auto &e = g[i][k]; if (not dist[e.to] or *dist[e.to] > d + e.cost) { dist[e.to] = d + e.cost; restore[e.to] = std::make_pair(i, k); if (not visited[e.to]) pq.emplace(*dist[e.to], e.to); } } } std::optional<Path> ret; if (dist[t]) { std::vector<int> p; int cur = t; while (cur != from) { auto [i, j] = restore[cur]; p.push_back(j); cur = i; } std::reverse(p.begin(), p.end()); ret = std::make_pair(*dist[t], p); } return ret; } } // namespace yen_algorithm_impl template <typename T> auto yen_algorithm(const graph<T> &g, int s, int t, int K) { using Path = std::pair<T, std::vector<int>>; const int N = g.size(); std::vector<std::vector<bool>> valid(N); std::vector<std::optional<Path>> result(K); std::priority_queue<Path, std::vector<Path>, std::greater<Path>> stock; for (int i = 0; i < N; ++i) { valid[i].assign(g[i].size(), true); } for (int i = 0; i < K; ++i) { if (i == 0) { std::vector<bool> usable(N, true); if (auto res = yen_algorithm_impl::shortest_path(g, s, t, usable, valid); res) stock.push(*res); } else { std::vector<int> prev_path; { int cur = s; for (auto u : result[i - 1]->second) { prev_path.push_back(cur); cur = g[cur][u].to; } prev_path.push_back(t); } std::vector<bool> check(i, true); std::vector<bool> usable(N, true); for (int k = 0; k < (int) prev_path.size() - 1; ++k) { const int u = prev_path[k]; for (int j = 0; j < i; ++j) { if (check[j]) { valid[prev_path[k]][result[j]->second[k]] = false; } } if (auto res = yen_algorithm_impl::shortest_path(g, u, t, usable, valid); res) { auto [c, p] = *res; std::vector<int> temp; for (int j = 0; j < k; ++j) { int v = result[i - 1]->second[j]; c += g[prev_path[j]][v].cost; temp.push_back(v); } temp.insert(temp.end(), p.begin(), p.end()); stock.emplace(c, temp); } usable[u] = false; for (int j = 0; j < i; ++j) { if (check[j]) { valid[prev_path[k]][result[j]->second[k]] = true; } } for (int j = 0; j < i; ++j) { if (check[j]) { if (prev_path[k + 1] != g[prev_path[k]][result[j]->second[k]].to) { check[j] = false; } } } } } if (stock.empty()) break; result[i] = stock.top(); stock.pop(); while (not stock.empty() and stock.top() == result[i]) { stock.pop(); } } return result; } } // namespace haar_lib