Tree height
(Mylib/Graph/TreeUtils/tree_height.cpp)
Operations
Requirements
Notes
Problems
References
Depends on
Verified with
Code
#pragma once
#include <algorithm>
#include <vector>
#include "Mylib/Graph/Template/graph.cpp"
#include "Mylib/Graph/TreeUtils/tree_distance.cpp"
namespace haar_lib {
template <typename T>
std::vector<T> tree_height(const tree<T> &tr) {
const int n = tr.size();
auto d = tree_distance(tr, 0);
int a = std::max_element(d.begin(), d.end()) - d.begin();
auto d1 = tree_distance(tr, a);
int b = std::max_element(d1.begin(), d1.end()) - d1.begin();
auto d2 = tree_distance(tr, b);
std::vector<T> h(n);
for (int i = 0; i < n; ++i) h[i] = std::max(d1[i], d2[i]);
return h;
}
} // namespace haar_lib
#line 2 "Mylib/Graph/TreeUtils/tree_height.cpp"
#include <algorithm>
#include <vector>
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 2 "Mylib/Graph/TreeUtils/tree_distance.cpp"
#include <stack>
#line 5 "Mylib/Graph/TreeUtils/tree_distance.cpp"
namespace haar_lib {
template <typename T>
std::vector<T> tree_distance(const tree<T> &tr, int root) {
const int n = tr.size();
std::vector<T> ret(n);
std::vector<bool> visited(n);
std::stack<int> st;
st.push(root);
ret[root] = 0;
while (not st.empty()) {
int cur = st.top();
st.pop();
visited[cur] = true;
for (auto &e : tr[cur]) {
if (not visited[e.to]) {
ret[e.to] = ret[cur] + e.cost;
st.push(e.to);
}
}
}
return ret;
}
} // namespace haar_lib
#line 6 "Mylib/Graph/TreeUtils/tree_height.cpp"
namespace haar_lib {
template <typename T>
std::vector<T> tree_height(const tree<T> &tr) {
const int n = tr.size();
auto d = tree_distance(tr, 0);
int a = std::max_element(d.begin(), d.end()) - d.begin();
auto d1 = tree_distance(tr, a);
int b = std::max_element(d1.begin(), d1.end()) - d1.begin();
auto d2 = tree_distance(tr, b);
std::vector<T> h(n);
for (int i = 0; i < n; ++i) h[i] = std::max(d1[i], d2[i]);
return h;
}
} // namespace haar_lib
Back to top page