Chinese postman problem
(Mylib/Graph/chinese_postman_problem.cpp)
Operations
-
chinese_postman_problem(g)
- すべての辺を一度以上通る閉路の最小距離を返す。
- Time complexity $O(n^2 2^n)$
Requirements
Notes
Problems
References
Depends on
Verified with
Code
#pragma once
#include <algorithm>
#include <vector>
#include "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
T chinese_postman_problem(const graph<T> &g) {
const int n = g.size();
T ret = 0;
// 頂点間の最短距離を求める。
std::vector<std::vector<int>> dist(n, std::vector<T>(n, -1));
for (int i = 0; i < n; ++i) dist[i][i] = 0;
for (int i = 0; i < n; ++i) {
for (auto &e : g[i]) {
if (dist[e.from][e.to] == -1)
dist[e.from][e.to] = e.cost;
else
dist[e.from][e.to] = std::min(dist[e.from][e.to], e.cost);
}
}
for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (dist[i][k] >= 0 and dist[k][j] >= 0) {
if (dist[i][j] == -1)
dist[i][j] = dist[i][k] + dist[k][j];
else
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
}
// 奇数次数の頂点を列挙
std::vector<int> odd;
for (int i = 0; i < n; ++i) {
if (g[i].size() % 2) odd.push_back(i);
}
const int m = odd.size();
// 奇数次数の頂点間の最小マッチングを求める。
std::vector<T> dp(1 << m, -1);
dp[0] = 0;
for (int i = 0; i < (1 << m); ++i) {
for (int j = 0; j < m; ++j) {
for (int k = 0; k < j; ++k) {
if ((i & (1 << j)) and (i & (1 << k))) {
if (dp[i] == -1)
dp[i] = dp[i ^ (1 << j) ^ (1 << k)] + dist[odd[j]][odd[k]];
else
dp[i] = std::min(dp[i], dp[i ^ (1 << j) ^ (1 << k)] + dist[odd[j]][odd[k]]);
}
}
}
}
// 返り値を計算
for (int i = 0; i < n; ++i) {
for (auto &e : g[i])
if (e.from <= e.to) ret += e.cost;
}
ret += dp[(1 << m) - 1];
return ret;
}
} // namespace haar_lib
#line 2 "Mylib/Graph/chinese_postman_problem.cpp"
#include <algorithm>
#include <vector>
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 5 "Mylib/Graph/chinese_postman_problem.cpp"
namespace haar_lib {
template <typename T>
T chinese_postman_problem(const graph<T> &g) {
const int n = g.size();
T ret = 0;
// 頂点間の最短距離を求める。
std::vector<std::vector<int>> dist(n, std::vector<T>(n, -1));
for (int i = 0; i < n; ++i) dist[i][i] = 0;
for (int i = 0; i < n; ++i) {
for (auto &e : g[i]) {
if (dist[e.from][e.to] == -1)
dist[e.from][e.to] = e.cost;
else
dist[e.from][e.to] = std::min(dist[e.from][e.to], e.cost);
}
}
for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (dist[i][k] >= 0 and dist[k][j] >= 0) {
if (dist[i][j] == -1)
dist[i][j] = dist[i][k] + dist[k][j];
else
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
}
// 奇数次数の頂点を列挙
std::vector<int> odd;
for (int i = 0; i < n; ++i) {
if (g[i].size() % 2) odd.push_back(i);
}
const int m = odd.size();
// 奇数次数の頂点間の最小マッチングを求める。
std::vector<T> dp(1 << m, -1);
dp[0] = 0;
for (int i = 0; i < (1 << m); ++i) {
for (int j = 0; j < m; ++j) {
for (int k = 0; k < j; ++k) {
if ((i & (1 << j)) and (i & (1 << k))) {
if (dp[i] == -1)
dp[i] = dp[i ^ (1 << j) ^ (1 << k)] + dist[odd[j]][odd[k]];
else
dp[i] = std::min(dp[i], dp[i ^ (1 << j) ^ (1 << k)] + dist[odd[j]][odd[k]]);
}
}
}
}
// 返り値を計算
for (int i = 0; i < n; ++i) {
for (auto &e : g[i])
if (e.from <= e.to) ret += e.cost;
}
ret += dp[(1 << m) - 1];
return ret;
}
} // namespace haar_lib
Back to top page