Linear system incidence
(Mylib/Graph/lsi.cpp)
Operations
Requirements
Notes
Problems
References
Depends on
Code
#pragma once
#include <algorithm>
#include <cassert>
#include <optional>
#include <vector>
#include "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T, typename U>
std::optional<std::vector<U>> lsi(const graph<T> &g, const std::vector<U> &c) {
const int N = g.size();
assert((int) c.size() == N);
graph<T> h(N);
int M = 0;
for (auto &v : g) {
for (auto &e : v) {
h[e.from].push_back(e);
h[e.to].push_back(e);
M = std::max(M, e.index + 1);
}
}
std::vector<U> ret(M);
std::vector<bool> check(N);
auto dfs =
[&](auto &dfs, int cur) -> U {
check[cur] = true;
U t = c[cur];
for (auto &e : h[cur]) {
auto v = e.from == cur ? e.to : e.from;
if (check[v]) continue;
auto y = dfs(dfs, v);
if (e.from == cur)
ret[e.index] = y;
else
ret[e.index] = -y;
t += y;
}
return t;
};
for (int i = 0; i < N; ++i) {
if (check[i]) continue;
auto y = dfs(dfs, i);
if (y != 0) return std::nullopt;
}
return ret;
}
} // namespace haar_lib
#line 2 "Mylib/Graph/lsi.cpp"
#include <algorithm>
#include <cassert>
#include <optional>
#include <vector>
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 7 "Mylib/Graph/lsi.cpp"
namespace haar_lib {
template <typename T, typename U>
std::optional<std::vector<U>> lsi(const graph<T> &g, const std::vector<U> &c) {
const int N = g.size();
assert((int) c.size() == N);
graph<T> h(N);
int M = 0;
for (auto &v : g) {
for (auto &e : v) {
h[e.from].push_back(e);
h[e.to].push_back(e);
M = std::max(M, e.index + 1);
}
}
std::vector<U> ret(M);
std::vector<bool> check(N);
auto dfs =
[&](auto &dfs, int cur) -> U {
check[cur] = true;
U t = c[cur];
for (auto &e : h[cur]) {
auto v = e.from == cur ? e.to : e.from;
if (check[v]) continue;
auto y = dfs(dfs, v);
if (e.from == cur)
ret[e.index] = y;
else
ret[e.index] = -y;
t += y;
}
return t;
};
for (int i = 0; i < N; ++i) {
if (check[i]) continue;
auto y = dfs(dfs, i);
if (y != 0) return std::nullopt;
}
return ret;
}
} // namespace haar_lib
Back to top page