#pragma once #include <algorithm> #include <cassert> #include <optional> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T, typename U> std::optional<std::vector<U>> lsi(const graph<T> &g, const std::vector<U> &c) { const int N = g.size(); assert((int) c.size() == N); graph<T> h(N); int M = 0; for (auto &v : g) { for (auto &e : v) { h[e.from].push_back(e); h[e.to].push_back(e); M = std::max(M, e.index + 1); } } std::vector<U> ret(M); std::vector<bool> check(N); auto dfs = [&](auto &dfs, int cur) -> U { check[cur] = true; U t = c[cur]; for (auto &e : h[cur]) { auto v = e.from == cur ? e.to : e.from; if (check[v]) continue; auto y = dfs(dfs, v); if (e.from == cur) ret[e.index] = y; else ret[e.index] = -y; t += y; } return t; }; for (int i = 0; i < N; ++i) { if (check[i]) continue; auto y = dfs(dfs, i); if (y != 0) return std::nullopt; } return ret; } } // namespace haar_lib
#line 2 "Mylib/Graph/lsi.cpp" #include <algorithm> #include <cassert> #include <optional> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 7 "Mylib/Graph/lsi.cpp" namespace haar_lib { template <typename T, typename U> std::optional<std::vector<U>> lsi(const graph<T> &g, const std::vector<U> &c) { const int N = g.size(); assert((int) c.size() == N); graph<T> h(N); int M = 0; for (auto &v : g) { for (auto &e : v) { h[e.from].push_back(e); h[e.to].push_back(e); M = std::max(M, e.index + 1); } } std::vector<U> ret(M); std::vector<bool> check(N); auto dfs = [&](auto &dfs, int cur) -> U { check[cur] = true; U t = c[cur]; for (auto &e : h[cur]) { auto v = e.from == cur ? e.to : e.from; if (check[v]) continue; auto y = dfs(dfs, v); if (e.from == cur) ret[e.index] = y; else ret[e.index] = -y; t += y; } return t; }; for (int i = 0; i < N; ++i) { if (check[i]) continue; auto y = dfs(dfs, i); if (y != 0) return std::nullopt; } return ret; } } // namespace haar_lib