#pragma once
#include <cassert>
#include <optional>
#include <vector>
#include "Mylib/Graph/GraphUtils/strongly_connected_components.cpp"
#include "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
class two_sat {
int n_;
graph<int> g_;
int f(int i) {
assert(i != 0);
assert(std::abs(i) <= n_);
if (i > 0)
return i - 1;
else
return std::abs(i) - 1 + n_;
}
public:
two_sat() {}
two_sat(int n) : n_(n), g_(2 * n) {}
/**
* @note a→bを導入する
*/
void add_if(int a, int b) {
g_.add_edge(f(a), f(b), 1);
}
/**
* @note a∨bを導入する
* @note a ∨ b <=> (!a => b) ∧ (!b => a)
*/
void add_or(int a, int b) {
add_if(-a, b);
add_if(-b, a);
}
/**
* @note ¬(a∧b)を導入する
* @note !(A ∧ B) <=> (!A ∨ !B)
*/
void not_coexist(int a, int b) {
add_or(-a, -b);
}
public:
std::optional<std::vector<bool>> solve() const {
auto [scc, m] = strongly_connected_components(g_);
for (int i = 0; i < n_; ++i) {
if (scc[i] == scc[i + n_]) return std::nullopt;
}
std::vector<bool> ret(n_);
for (int i = 0; i < n_; ++i) ret[i] = scc[i] > scc[i + n_];
return ret;
}
};
} // namespace haar_lib
#line 2 "Mylib/Graph/two_sat.cpp"
#include <cassert>
#include <optional>
#include <vector>
#line 2 "Mylib/Graph/GraphUtils/strongly_connected_components.cpp"
#include <algorithm>
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 5 "Mylib/Graph/GraphUtils/strongly_connected_components.cpp"
namespace haar_lib {
template <typename T>
auto strongly_connected_components(const graph<T> &g) {
const int n = g.size();
std::vector<int> ret(n), low(n, -1), ord(n, -1), S;
std::vector<bool> check(n);
S.reserve(n);
int t = 0;
int k = 0;
auto dfs =
[&](auto &dfs, int cur) -> void {
low[cur] = ord[cur] = t++;
S.push_back(cur);
check[cur] = true;
for (auto &e : g[cur]) {
if (ord[e.to] == -1) {
dfs(dfs, e.to);
low[cur] = std::min(low[cur], low[e.to]);
} else if (check[e.to]) {
low[cur] = std::min(low[cur], low[e.to]);
}
}
if (low[cur] == ord[cur]) {
while (true) {
int u = S.back();
S.pop_back();
check[u] = false;
ret[u] = k;
if (cur == u) break;
}
++k;
}
};
for (int i = 0; i < n; ++i) {
if (ord[i] == -1) {
t = 0;
dfs(dfs, i);
}
}
for (auto &x : ret) x = k - 1 - x;
return std::make_pair(ret, k);
}
} // namespace haar_lib
#line 7 "Mylib/Graph/two_sat.cpp"
namespace haar_lib {
class two_sat {
int n_;
graph<int> g_;
int f(int i) {
assert(i != 0);
assert(std::abs(i) <= n_);
if (i > 0)
return i - 1;
else
return std::abs(i) - 1 + n_;
}
public:
two_sat() {}
two_sat(int n) : n_(n), g_(2 * n) {}
/**
* @note a→bを導入する
*/
void add_if(int a, int b) {
g_.add_edge(f(a), f(b), 1);
}
/**
* @note a∨bを導入する
* @note a ∨ b <=> (!a => b) ∧ (!b => a)
*/
void add_or(int a, int b) {
add_if(-a, b);
add_if(-b, a);
}
/**
* @note ¬(a∧b)を導入する
* @note !(A ∧ B) <=> (!A ∨ !B)
*/
void not_coexist(int a, int b) {
add_or(-a, -b);
}
public:
std::optional<std::vector<bool>> solve() const {
auto [scc, m] = strongly_connected_components(g_);
for (int i = 0; i < n_; ++i) {
if (scc[i] == scc[i + n_]) return std::nullopt;
}
std::vector<bool> ret(n_);
for (int i = 0; i < n_; ++i) ret[i] = scc[i] > scc[i + n_];
return ret;
}
};
} // namespace haar_lib