kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: Prime factorization (Pollard's rho algorithm)
(Mylib/Number/Prime/pollard_rho.cpp)

Operations

Requirements

Notes

Problems

References

Depends on

Verified with

Code

#pragma once
#include <algorithm>
#include <cassert>
#include <numeric>
#include <optional>
#include <utility>
#include <vector>
#include "Mylib/Misc/int128.cpp"
#include "Mylib/Number/Prime/miller_rabin.cpp"

namespace haar_lib {
  namespace pollard_rho_impl {
    int128_t f(int128_t x) {
      return x * x + 1;
    }

    std::optional<int64_t> rho(int64_t n) {
      int64_t x = 2, y = 2, d = 1;

      while (d == 1) {
        x = f(x) % n;
        y = f(f(y) % n) % n;
        d = std::gcd(std::abs(x - y), n);
        if (d == n) return {};
      }

      return {d};
    }
  }  // namespace pollard_rho_impl

  auto pollard_rho(int64_t n) -> std::vector<std::pair<int64_t, int64_t>> {
    std::vector<std::pair<int64_t, int64_t>> ret;

    for (int i = 2; i <= 1000000; ++i) {
      if (n % i == 0) {
        int c = 0;
        while (n % i == 0) {
          n /= i;
          ++c;
        }
        ret.emplace_back(i, c);
      }
      if (i > n) break;
    }

    while (n > 1) {
      if (miller_rabin(n)) {
        ret.emplace_back(n, 1);
        break;
      }

      auto res = pollard_rho_impl::rho(n);
      if (not res) {
        assert(false);
      }

      auto r = *res;
      if (r == 1) break;

      int c = 0;
      while (n % r == 0) {
        n /= r;
        ++c;
      }

      ret.emplace_back(r, c);
    }

    std::sort(ret.begin(), ret.end());

    return ret;
  }
}  // namespace haar_lib
#line 2 "Mylib/Number/Prime/pollard_rho.cpp"
#include <algorithm>
#include <cassert>
#include <numeric>
#include <optional>
#include <utility>
#include <vector>
#line 2 "Mylib/Misc/int128.cpp"

namespace haar_lib {
#ifdef __SIZEOF_INT128__
  using uint128_t = __uint128_t;
  using int128_t  = __int128_t;
#else
#include <boost/multiprecision/cpp_int.hpp>
  using uint128_t = boost::multiprecision::uint128_t;
  using int128_t  = boost::multiprecision::int128_t;
#endif
}  // namespace haar_lib
#line 2 "Mylib/Number/Prime/miller_rabin.cpp"
#include <cstdint>
#include <initializer_list>
#line 5 "Mylib/Number/Prime/miller_rabin.cpp"

namespace haar_lib {
  namespace miller_rabin_impl {
    uint128_t power(uint128_t a, uint128_t b, uint128_t p) {
      uint128_t ret = 1;

      while (b > 0) {
        if (b & 1) ret = ret * a % p;
        a = a * a % p;
        b >>= 1;
      }

      return ret;
    }

    bool is_composite(uint64_t a, uint64_t p, int s, uint64_t d) {
      uint128_t x = power(a, d, p);

      if (x == 1) return false;

      for (int i = 0; i < s; ++i) {
        if (x == p - 1) return false;
        x = x * x % p;
      }

      return true;
    }
  }  // namespace miller_rabin_impl

  bool miller_rabin(uint64_t n) {
    if (n <= 1) return false;
    if (n == 2) return true;
    if (n % 2 == 0) return false;

    int s      = 0;
    uint64_t d = n - 1;
    while ((d & 1) == 0) {
      s += 1;
      d >>= 1;
    }

    if (n < 4759123141) {
      for (uint64_t x : {2, 7, 61}) {
        if (x < n and miller_rabin_impl::is_composite(x, n, s, d)) return false;
      }

      return true;
    }

    for (uint64_t x : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
      if (x < n and miller_rabin_impl::is_composite(x, n, s, d)) return false;
    }

    return true;
  }
}  // namespace haar_lib
#line 10 "Mylib/Number/Prime/pollard_rho.cpp"

namespace haar_lib {
  namespace pollard_rho_impl {
    int128_t f(int128_t x) {
      return x * x + 1;
    }

    std::optional<int64_t> rho(int64_t n) {
      int64_t x = 2, y = 2, d = 1;

      while (d == 1) {
        x = f(x) % n;
        y = f(f(y) % n) % n;
        d = std::gcd(std::abs(x - y), n);
        if (d == n) return {};
      }

      return {d};
    }
  }  // namespace pollard_rho_impl

  auto pollard_rho(int64_t n) -> std::vector<std::pair<int64_t, int64_t>> {
    std::vector<std::pair<int64_t, int64_t>> ret;

    for (int i = 2; i <= 1000000; ++i) {
      if (n % i == 0) {
        int c = 0;
        while (n % i == 0) {
          n /= i;
          ++c;
        }
        ret.emplace_back(i, c);
      }
      if (i > n) break;
    }

    while (n > 1) {
      if (miller_rabin(n)) {
        ret.emplace_back(n, 1);
        break;
      }

      auto res = pollard_rho_impl::rho(n);
      if (not res) {
        assert(false);
      }

      auto r = *res;
      if (r == 1) break;

      int c = 0;
      while (n % r == 0) {
        n /= r;
        ++c;
      }

      ret.emplace_back(r, c);
    }

    std::sort(ret.begin(), ret.end());

    return ret;
  }
}  // namespace haar_lib
Back to top page