#pragma once #include <algorithm> #include <cassert> #include <numeric> #include <optional> #include <utility> #include <vector> #include "Mylib/Misc/int128.cpp" #include "Mylib/Number/Prime/miller_rabin.cpp" namespace haar_lib { namespace pollard_rho_impl { int128_t f(int128_t x) { return x * x + 1; } std::optional<int64_t> rho(int64_t n) { int64_t x = 2, y = 2, d = 1; while (d == 1) { x = f(x) % n; y = f(f(y) % n) % n; d = std::gcd(std::abs(x - y), n); if (d == n) return {}; } return {d}; } } // namespace pollard_rho_impl auto pollard_rho(int64_t n) -> std::vector<std::pair<int64_t, int64_t>> { std::vector<std::pair<int64_t, int64_t>> ret; for (int i = 2; i <= 1000000; ++i) { if (n % i == 0) { int c = 0; while (n % i == 0) { n /= i; ++c; } ret.emplace_back(i, c); } if (i > n) break; } while (n > 1) { if (miller_rabin(n)) { ret.emplace_back(n, 1); break; } auto res = pollard_rho_impl::rho(n); if (not res) { assert(false); } auto r = *res; if (r == 1) break; int c = 0; while (n % r == 0) { n /= r; ++c; } ret.emplace_back(r, c); } std::sort(ret.begin(), ret.end()); return ret; } } // namespace haar_lib
#line 2 "Mylib/Number/Prime/pollard_rho.cpp" #include <algorithm> #include <cassert> #include <numeric> #include <optional> #include <utility> #include <vector> #line 2 "Mylib/Misc/int128.cpp" namespace haar_lib { #ifdef __SIZEOF_INT128__ using uint128_t = __uint128_t; using int128_t = __int128_t; #else #include <boost/multiprecision/cpp_int.hpp> using uint128_t = boost::multiprecision::uint128_t; using int128_t = boost::multiprecision::int128_t; #endif } // namespace haar_lib #line 2 "Mylib/Number/Prime/miller_rabin.cpp" #include <cstdint> #include <initializer_list> #line 5 "Mylib/Number/Prime/miller_rabin.cpp" namespace haar_lib { namespace miller_rabin_impl { uint128_t power(uint128_t a, uint128_t b, uint128_t p) { uint128_t ret = 1; while (b > 0) { if (b & 1) ret = ret * a % p; a = a * a % p; b >>= 1; } return ret; } bool is_composite(uint64_t a, uint64_t p, int s, uint64_t d) { uint128_t x = power(a, d, p); if (x == 1) return false; for (int i = 0; i < s; ++i) { if (x == p - 1) return false; x = x * x % p; } return true; } } // namespace miller_rabin_impl bool miller_rabin(uint64_t n) { if (n <= 1) return false; if (n == 2) return true; if (n % 2 == 0) return false; int s = 0; uint64_t d = n - 1; while ((d & 1) == 0) { s += 1; d >>= 1; } if (n < 4759123141) { for (uint64_t x : {2, 7, 61}) { if (x < n and miller_rabin_impl::is_composite(x, n, s, d)) return false; } return true; } for (uint64_t x : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) { if (x < n and miller_rabin_impl::is_composite(x, n, s, d)) return false; } return true; } } // namespace haar_lib #line 10 "Mylib/Number/Prime/pollard_rho.cpp" namespace haar_lib { namespace pollard_rho_impl { int128_t f(int128_t x) { return x * x + 1; } std::optional<int64_t> rho(int64_t n) { int64_t x = 2, y = 2, d = 1; while (d == 1) { x = f(x) % n; y = f(f(y) % n) % n; d = std::gcd(std::abs(x - y), n); if (d == n) return {}; } return {d}; } } // namespace pollard_rho_impl auto pollard_rho(int64_t n) -> std::vector<std::pair<int64_t, int64_t>> { std::vector<std::pair<int64_t, int64_t>> ret; for (int i = 2; i <= 1000000; ++i) { if (n % i == 0) { int c = 0; while (n % i == 0) { n /= i; ++c; } ret.emplace_back(i, c); } if (i > n) break; } while (n > 1) { if (miller_rabin(n)) { ret.emplace_back(n, 1); break; } auto res = pollard_rho_impl::rho(n); if (not res) { assert(false); } auto r = *res; if (r == 1) break; int c = 0; while (n % r == 0) { n /= r; ++c; } ret.emplace_back(r, c); } std::sort(ret.begin(), ret.end()); return ret; } } // namespace haar_lib