Knapsack problem (With quantity limitations)
(Mylib/Typical/knapsack_limited.cpp)
Operations
-
knapsack_limited(int N, Weight cap, Weight w[N], Value v[N], int m[N])
- 個数制限ナップサック問題を解く。
- Time complexity $O(N cap \log \max m)$
Requirements
Notes
Problems
References
Verified with
Code
#pragma once
#include <algorithm>
#include <vector>
namespace haar_lib {
template <typename Weight, typename Value>
Value knapsack_limited(int N, Weight cap, const std::vector<Weight> &w, const std::vector<Value> &v, const std::vector<int> &m) {
std::vector<Value> dp(cap + 1);
for (int i = 0; i < N; ++i) {
for (int64_t a = 1, x = m[i], k; k = std::min(x, a), x > 0; x -= k, a *= 2) {
for (int j = cap; j >= 0; --j) {
if (j - k * w[i] >= 0) {
dp[j] = std::max(dp[j], dp[j - k * w[i]] + (Weight) k * v[i]);
}
}
}
}
return dp[cap];
}
} // namespace haar_lib
#line 2 "Mylib/Typical/knapsack_limited.cpp"
#include <algorithm>
#include <vector>
namespace haar_lib {
template <typename Weight, typename Value>
Value knapsack_limited(int N, Weight cap, const std::vector<Weight> &w, const std::vector<Value> &v, const std::vector<int> &m) {
std::vector<Value> dp(cap + 1);
for (int i = 0; i < N; ++i) {
for (int64_t a = 1, x = m[i], k; k = std::min(x, a), x > 0; x -= k, a *= 2) {
for (int j = cap; j >= 0; --j) {
if (j - k * w[i] >= 0) {
dp[j] = std::max(dp[j], dp[j - k * w[i]] + (Weight) k * v[i]);
}
}
}
}
return dp[cap];
}
} // namespace haar_lib
Back to top page