kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: test/aoj/0390/main.test.cpp

Depends on

Code

#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0390"

#include <iostream>
#include <variant>
#include "Mylib/AlgebraicStructure/Group/dihedral.cpp"
#include "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/IO/input_vector.cpp"

namespace hl = haar_lib;

static int K;
using M = hl::dihedral_group<K>;

int main() {
  int N, Q;
  std::cin >> K >> N >> Q;
  auto A = hl::input_vector<int>(N);

  hl::segment_tree<M> seg(N);

  for (int i = 0; i < N; ++i) {
    if (A[i] > 0) {
      seg.set(i, M::R({A[i] % K}));
    } else if (A[i] < 0) {
      seg.set(i, M::R({A[i] % K + K}));
    } else {
      seg.set(i, M::S({0}));
    }
  }

  for (auto [L, R] : hl::input_tuples<int, int>(Q)) {
    --L, --R;

    auto x = seg[L];
    auto y = seg[R];
    seg.set(L, y);
    seg.set(R, x);

    auto res = seg.fold_all();

    if (std::holds_alternative<M::R>(res)) {
      int ans = (K - std::get<M::R>(res).value) % K + 1;
      std::cout << ans << "\n";
    } else {
      int ans = -(std::get<M::S>(res).value + 1);
      std::cout << ans << "\n";
    }
  }

  return 0;
}
#line 1 "test/aoj/0390/main.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0390"

#include <iostream>
#include <variant>
#line 4 "Mylib/AlgebraicStructure/Group/dihedral.cpp"

namespace haar_lib {
  namespace dihedral_group_impl {
    struct R {
      int value = 0;
      friend std::ostream &operator<<(std::ostream &s, const R &a) {
        s << "R(" << a.value << ")";
        return s;
      }
      R() {}
      R(int value) : value(value) {}
    };

    struct S {
      int value = 0;
      friend std::ostream &operator<<(std::ostream &s, const S &a) {
        s << "S(" << a.value << ")";
        return s;
      }
      S() {}
      S(int value) : value(value) {}
    };
  }  // namespace dihedral_group_impl

  template <const int &K>
  struct dihedral_group {
    using R          = dihedral_group_impl::R;
    using S          = dihedral_group_impl::S;
    using value_type = std::variant<R, S>;

    value_type operator()() const {
      return R(0);
    }

    value_type operator()(const value_type &a, const value_type &b) const {
      if (std::holds_alternative<R>(a)) {
        if (std::holds_alternative<R>(b)) {
          return R((std::get<R>(a).value + std::get<R>(b).value) % K);
        } else {
          return S((std::get<S>(b).value - std::get<R>(a).value + K) % K);
        }
      } else {
        if (std::holds_alternative<R>(b)) {
          return S((std::get<S>(a).value + std::get<R>(b).value) % K);
        } else {
          return R((std::get<S>(b).value - std::get<S>(a).value + K) % K);
        }
      }
    }

    value_type inv(const value_type &a) const {
      if (std::holds_alternative<R>(a)) {
        const int i = std::get<R>(a).value;
        return R(i == 0 ? 0 : K - i);
      } else {
        return a;
      }
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>

namespace haar_lib {
  template <typename Monoid>
  class segment_tree {
  public:
    using value_type = typename Monoid::value_type;

  private:
    Monoid M_;
    int depth_, size_, hsize_;
    std::vector<value_type> data_;

  public:
    segment_tree() {}
    segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
                          size_(1 << depth_),
                          hsize_(size_ / 2),
                          data_(size_, M_()) {}

    auto operator[](int i) const {
      assert(0 <= i and i < hsize_);
      return data_[hsize_ + i];
    }

    auto fold(int l, int r) const {
      assert(0 <= l and l <= r and r <= hsize_);
      value_type ret_left  = M_();
      value_type ret_right = M_();

      int L = l + hsize_, R = r + hsize_;
      while (L < R) {
        if (R & 1) ret_right = M_(data_[--R], ret_right);
        if (L & 1) ret_left = M_(ret_left, data_[L++]);
        L >>= 1, R >>= 1;
      }

      return M_(ret_left, ret_right);
    }

    auto fold_all() const {
      return data_[1];
    }

    void set(int i, const value_type &x) {
      assert(0 <= i and i < hsize_);
      i += hsize_;
      data_[i] = x;
      while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }

    void update(int i, const value_type &x) {
      assert(0 <= i and i < hsize_);
      i += hsize_;
      data_[i] = M_(data_[i], x);
      while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }

    template <typename T>
    void init_with_vector(const std::vector<T> &val) {
      data_.assign(size_, M_());
      for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i];
      for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }

    template <typename T>
    void init(const T &val) {
      init_with_vector(std::vector<value_type>(hsize_, val));
    }

  private:
    template <bool Lower, typename F>
    int bound(const int l, const int r, value_type x, F f) const {
      std::vector<int> pl, pr;
      int L = l + hsize_;
      int R = r + hsize_;
      while (L < R) {
        if (R & 1) pr.push_back(--R);
        if (L & 1) pl.push_back(L++);
        L >>= 1, R >>= 1;
      }

      std::reverse(pr.begin(), pr.end());
      pl.insert(pl.end(), pr.begin(), pr.end());

      value_type a = M_();

      for (int i : pl) {
        auto b = M_(a, data_[i]);

        if ((Lower and not f(b, x)) or (not Lower and f(x, b))) {
          while (i < hsize_) {
            const auto c = M_(a, data_[i << 1 | 0]);
            if ((Lower and not f(c, x)) or (not Lower and f(x, c))) {
              i = i << 1 | 0;
            } else {
              a = c;
              i = i << 1 | 1;
            }
          }

          return i - hsize_;
        }

        a = b;
      }

      return r;
    }

  public:
    template <typename F = std::less<value_type>>
    int lower_bound(int l, int r, value_type x, F f = F()) const {
      return bound<true>(l, r, x, f);
    }

    template <typename F = std::less<value_type>>
    int upper_bound(int l, int r, value_type x, F f = F()) const {
      return bound<false>(l, r, x, f);
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#include <utility>
#line 6 "Mylib/IO/input_tuple.cpp"

namespace haar_lib {
  template <typename T, size_t... I>
  static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
    (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
  }

  template <typename T, typename U>
  std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
    s >> value.first >> value.second;
    return s;
  }

  template <typename... Args>
  std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
    input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
    return s;
  }
}  // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"

namespace haar_lib {
  template <typename... Args>
  class InputTuples {
    struct iter {
      using value_type = std::tuple<Args...>;
      value_type value;
      bool fetched = false;
      int N, c = 0;

      value_type operator*() {
        if (not fetched) {
          std::cin >> value;
        }
        return value;
      }

      void operator++() {
        ++c;
        fetched = false;
      }

      bool operator!=(iter &) const {
        return c < N;
      }

      iter(int N) : N(N) {}
    };

    int N;

  public:
    InputTuples(int N) : N(N) {}

    iter begin() const { return iter(N); }
    iter end() const { return iter(N); }
  };

  template <typename... Args>
  auto input_tuples(int N) {
    return InputTuples<Args...>(N);
  }
}  // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"

namespace haar_lib {
  template <typename T>
  std::vector<T> input_vector(int N) {
    std::vector<T> ret(N);
    for (int i = 0; i < N; ++i) std::cin >> ret[i];
    return ret;
  }

  template <typename T>
  std::vector<std::vector<T>> input_vector(int N, int M) {
    std::vector<std::vector<T>> ret(N);
    for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
    return ret;
  }
}  // namespace haar_lib
#line 9 "test/aoj/0390/main.test.cpp"

namespace hl = haar_lib;

static int K;
using M = hl::dihedral_group<K>;

int main() {
  int N, Q;
  std::cin >> K >> N >> Q;
  auto A = hl::input_vector<int>(N);

  hl::segment_tree<M> seg(N);

  for (int i = 0; i < N; ++i) {
    if (A[i] > 0) {
      seg.set(i, M::R({A[i] % K}));
    } else if (A[i] < 0) {
      seg.set(i, M::R({A[i] % K + K}));
    } else {
      seg.set(i, M::S({0}));
    }
  }

  for (auto [L, R] : hl::input_tuples<int, int>(Q)) {
    --L, --R;

    auto x = seg[L];
    auto y = seg[R];
    seg.set(L, y);
    seg.set(R, x);

    auto res = seg.fold_all();

    if (std::holds_alternative<M::R>(res)) {
      int ans = (K - std::get<M::R>(res).value) % K + 1;
      std::cout << ans << "\n";
    } else {
      int ans = -(std::get<M::S>(res).value + 1);
      std::cout << ans << "\n";
    }
  }

  return 0;
}
Back to top page