#line 1 "test/aoj/0390/main.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0390"
#include <iostream>
#include <variant>
#line 4 "Mylib/AlgebraicStructure/Group/dihedral.cpp"
namespace haar_lib {
namespace dihedral_group_impl {
struct R {
int value = 0;
friend std::ostream &operator<<(std::ostream &s, const R &a) {
s << "R(" << a.value << ")";
return s;
}
R() {}
R(int value) : value(value) {}
};
struct S {
int value = 0;
friend std::ostream &operator<<(std::ostream &s, const S &a) {
s << "S(" << a.value << ")";
return s;
}
S() {}
S(int value) : value(value) {}
};
} // namespace dihedral_group_impl
template <const int &K>
struct dihedral_group {
using R = dihedral_group_impl::R;
using S = dihedral_group_impl::S;
using value_type = std::variant<R, S>;
value_type operator()() const {
return R(0);
}
value_type operator()(const value_type &a, const value_type &b) const {
if (std::holds_alternative<R>(a)) {
if (std::holds_alternative<R>(b)) {
return R((std::get<R>(a).value + std::get<R>(b).value) % K);
} else {
return S((std::get<S>(b).value - std::get<R>(a).value + K) % K);
}
} else {
if (std::holds_alternative<R>(b)) {
return S((std::get<S>(a).value + std::get<R>(b).value) % K);
} else {
return R((std::get<S>(b).value - std::get<S>(a).value + K) % K);
}
}
}
value_type inv(const value_type &a) const {
if (std::holds_alternative<R>(a)) {
const int i = std::get<R>(a).value;
return R(i == 0 ? 0 : K - i);
} else {
return a;
}
}
};
} // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>
namespace haar_lib {
template <typename Monoid>
class segment_tree {
public:
using value_type = typename Monoid::value_type;
private:
Monoid M_;
int depth_, size_, hsize_;
std::vector<value_type> data_;
public:
segment_tree() {}
segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
size_(1 << depth_),
hsize_(size_ / 2),
data_(size_, M_()) {}
auto operator[](int i) const {
assert(0 <= i and i < hsize_);
return data_[hsize_ + i];
}
auto fold(int l, int r) const {
assert(0 <= l and l <= r and r <= hsize_);
value_type ret_left = M_();
value_type ret_right = M_();
int L = l + hsize_, R = r + hsize_;
while (L < R) {
if (R & 1) ret_right = M_(data_[--R], ret_right);
if (L & 1) ret_left = M_(ret_left, data_[L++]);
L >>= 1, R >>= 1;
}
return M_(ret_left, ret_right);
}
auto fold_all() const {
return data_[1];
}
void set(int i, const value_type &x) {
assert(0 <= i and i < hsize_);
i += hsize_;
data_[i] = x;
while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
void update(int i, const value_type &x) {
assert(0 <= i and i < hsize_);
i += hsize_;
data_[i] = M_(data_[i], x);
while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
template <typename T>
void init_with_vector(const std::vector<T> &val) {
data_.assign(size_, M_());
for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i];
for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
template <typename T>
void init(const T &val) {
init_with_vector(std::vector<value_type>(hsize_, val));
}
private:
template <bool Lower, typename F>
int bound(const int l, const int r, value_type x, F f) const {
std::vector<int> pl, pr;
int L = l + hsize_;
int R = r + hsize_;
while (L < R) {
if (R & 1) pr.push_back(--R);
if (L & 1) pl.push_back(L++);
L >>= 1, R >>= 1;
}
std::reverse(pr.begin(), pr.end());
pl.insert(pl.end(), pr.begin(), pr.end());
value_type a = M_();
for (int i : pl) {
auto b = M_(a, data_[i]);
if ((Lower and not f(b, x)) or (not Lower and f(x, b))) {
while (i < hsize_) {
const auto c = M_(a, data_[i << 1 | 0]);
if ((Lower and not f(c, x)) or (not Lower and f(x, c))) {
i = i << 1 | 0;
} else {
a = c;
i = i << 1 | 1;
}
}
return i - hsize_;
}
a = b;
}
return r;
}
public:
template <typename F = std::less<value_type>>
int lower_bound(int l, int r, value_type x, F f = F()) const {
return bound<true>(l, r, x, f);
}
template <typename F = std::less<value_type>>
int upper_bound(int l, int r, value_type x, F f = F()) const {
return bound<false>(l, r, x, f);
}
};
} // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#include <utility>
#line 6 "Mylib/IO/input_tuple.cpp"
namespace haar_lib {
template <typename T, size_t... I>
static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
(void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
}
template <typename T, typename U>
std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
s >> value.first >> value.second;
return s;
}
template <typename... Args>
std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
return s;
}
} // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"
namespace haar_lib {
template <typename... Args>
class InputTuples {
struct iter {
using value_type = std::tuple<Args...>;
value_type value;
bool fetched = false;
int N, c = 0;
value_type operator*() {
if (not fetched) {
std::cin >> value;
}
return value;
}
void operator++() {
++c;
fetched = false;
}
bool operator!=(iter &) const {
return c < N;
}
iter(int N) : N(N) {}
};
int N;
public:
InputTuples(int N) : N(N) {}
iter begin() const { return iter(N); }
iter end() const { return iter(N); }
};
template <typename... Args>
auto input_tuples(int N) {
return InputTuples<Args...>(N);
}
} // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"
namespace haar_lib {
template <typename T>
std::vector<T> input_vector(int N) {
std::vector<T> ret(N);
for (int i = 0; i < N; ++i) std::cin >> ret[i];
return ret;
}
template <typename T>
std::vector<std::vector<T>> input_vector(int N, int M) {
std::vector<std::vector<T>> ret(N);
for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
return ret;
}
} // namespace haar_lib
#line 9 "test/aoj/0390/main.test.cpp"
namespace hl = haar_lib;
static int K;
using M = hl::dihedral_group<K>;
int main() {
int N, Q;
std::cin >> K >> N >> Q;
auto A = hl::input_vector<int>(N);
hl::segment_tree<M> seg(N);
for (int i = 0; i < N; ++i) {
if (A[i] > 0) {
seg.set(i, M::R({A[i] % K}));
} else if (A[i] < 0) {
seg.set(i, M::R({A[i] % K + K}));
} else {
seg.set(i, M::S({0}));
}
}
for (auto [L, R] : hl::input_tuples<int, int>(Q)) {
--L, --R;
auto x = seg[L];
auto y = seg[R];
seg.set(L, y);
seg.set(R, x);
auto res = seg.fold_all();
if (std::holds_alternative<M::R>(res)) {
int ans = (K - std::get<M::R>(res).value) % K + 1;
std::cout << ans << "\n";
} else {
int ans = -(std::get<M::S>(res).value + 1);
std::cout << ans << "\n";
}
}
return 0;
}