#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2559" #include <iostream> #include <map> #include <set> #include <tuple> #include <vector> #include "Mylib/DataStructure/Heap/pairing_heap.cpp" #include "Mylib/Graph/MinimumSpanningTree/prim.cpp" #include "Mylib/Graph/Template/graph.cpp" #include "Mylib/Misc/merge_technique.cpp" #include "Mylib/Utils/fix_point.cpp" namespace hl = haar_lib; int main() { int n, m; std::cin >> n >> m; hl::graph<int64_t> g(n); g.read<1, false>(m); std::map<std::pair<int, int>, int> index; for (auto &a : g) { for (auto &e : a) index[{e.from, e.to}] = e.index; } auto res = hl::prim(g); std::vector<int64_t> ans(m, -1); if ((int) res.size() == n - 1) { int64_t s = 0; hl::tree<int64_t> tree(n); for (auto &e : res) { s += e.cost; tree[e.from].push_back(e); } ans.assign(m, s); std::vector<hl::pairing_heap<std::tuple<int64_t, int, int>, std::greater<>>> heaps(n); std::vector<std::set<int>> sub(n); hl::make_fix_point( [&](auto &&f, int cur, int par, int64_t cost) -> void { for (auto &e : g[cur]) { heaps[cur].push({e.cost, e.from, e.to}); } sub[cur].insert(cur); for (auto &e : tree[cur]) { if (e.to == par) continue; f(e.to, cur, e.cost); heaps[cur].meld(heaps[e.to]); hl::merge_technique(sub[cur], sub[cur], sub[e.to]); } if (par != -1) { while (not heaps[cur].empty()) { auto [c, i, j] = heaps[cur].top(); if ((sub[cur].find(i) != sub[cur].end() and sub[cur].find(j) != sub[cur].end()) or (i == cur and j == par) or (i == par and j == cur)) { heaps[cur].pop(); } else { break; } } if (not heaps[cur].empty()) { ans[index[{cur, par}]] = s - cost + std::get<0>(heaps[cur].top()); } else { ans[index[{cur, par}]] = -1; } } })(0, -1, 0); } for (auto x : ans) { std::cout << x << std::endl; } return 0; }
#line 1 "test/aoj/2559/main.pairing_heap.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2559" #include <iostream> #include <map> #include <set> #include <tuple> #include <vector> #line 2 "Mylib/DataStructure/Heap/pairing_heap.cpp" #include <functional> #line 4 "Mylib/DataStructure/Heap/pairing_heap.cpp" namespace haar_lib { template <typename T, typename Compare = std::less<T>> class pairing_heap { public: using value_type = T; private: struct node_ { T value; std::vector<node_ *> ch; node_(const T &value) : value(value) {} }; Compare compare_; node_ *root_ = nullptr; size_t size_ = 0; node_ *merge_(node_ *a, node_ *b) { if (not a) return b; if (not b) return a; if (compare_(b->value, a->value)) { a->ch.push_back(b); return a; } else { b->ch.push_back(a); return b; } } node_ *merge_list_(node_ *a) { if ((a->ch.size() & 1) == 1) a->ch.push_back(nullptr); for (size_t i = 0; i < a->ch.size(); i += 2) { a->ch[i >> 1] = merge_(a->ch[i], a->ch[i + 1]); } a->ch.resize(a->ch.size() / 2); node_ *ret = nullptr; for (int i = a->ch.size(); --i >= 0;) { ret = merge_(ret, a->ch[i]); } return ret; } public: pairing_heap() : compare_(Compare()) {} pairing_heap(const Compare &compare_) : compare_(compare_) {} void meld(pairing_heap &that) { root_ = merge_(root_, that.root_); that.root_ = nullptr; size_ += that.size_; that.size_ = 0; } void push(const T &val) { root_ = merge_(root_, new node_(val)); ++size_; } void pop() { root_ = merge_list_(root_); --size_; } const T &top() const { return root_->value; } bool empty() const { return root_ == nullptr; } size_t size() const { return size_; } }; } // namespace haar_lib #line 2 "Mylib/Graph/MinimumSpanningTree/prim.cpp" #include <queue> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 5 "Mylib/Graph/MinimumSpanningTree/prim.cpp" namespace haar_lib { template <typename T> std::vector<edge<T>> prim(const graph<T> &graph) { const int n = graph.size(); std::vector<bool> visit(n, false); std::vector<edge<T>> ret; auto cmp = [](const auto &a, const auto &b) { return a.cost > b.cost; }; std::priority_queue<edge<T>, std::vector<edge<T>>, decltype(cmp)> pq(cmp); visit[0] = true; for (auto &e : graph[0]) pq.push(e); while (not pq.empty()) { auto t = pq.top(); pq.pop(); if (visit[t.from] == visit[t.to]) continue; int i = visit[t.from] ? t.to : t.from; for (auto &e : graph[i]) { pq.push(e); } visit[i] = true; ret.push_back(t); } return ret; } } // namespace haar_lib #line 3 "Mylib/Misc/merge_technique.cpp" #include <utility> namespace haar_lib { template <typename T> void merge_technique(std::set<T> &res, std::set<T> &a, std::set<T> &b) { if (a.size() > b.size()) { a.insert(b.begin(), b.end()); std::swap(res, a); } else { b.insert(a.begin(), a.end()); std::swap(res, b); } } } // namespace haar_lib #line 3 "Mylib/Utils/fix_point.cpp" namespace haar_lib { template <typename F> struct fix_point : F { explicit constexpr fix_point(F &&f) noexcept : F(std::forward<F>(f)) {} template <typename... Args> constexpr auto operator()(Args &&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; template <typename F> inline constexpr auto make_fix_point(F &&f) { return fix_point<F>(std::forward<F>(f)); } template <typename F> inline constexpr auto make_fix_point(F &f) { return fix_point<F>(std::forward<F>(f)); } } // namespace haar_lib #line 13 "test/aoj/2559/main.pairing_heap.test.cpp" namespace hl = haar_lib; int main() { int n, m; std::cin >> n >> m; hl::graph<int64_t> g(n); g.read<1, false>(m); std::map<std::pair<int, int>, int> index; for (auto &a : g) { for (auto &e : a) index[{e.from, e.to}] = e.index; } auto res = hl::prim(g); std::vector<int64_t> ans(m, -1); if ((int) res.size() == n - 1) { int64_t s = 0; hl::tree<int64_t> tree(n); for (auto &e : res) { s += e.cost; tree[e.from].push_back(e); } ans.assign(m, s); std::vector<hl::pairing_heap<std::tuple<int64_t, int, int>, std::greater<>>> heaps(n); std::vector<std::set<int>> sub(n); hl::make_fix_point( [&](auto &&f, int cur, int par, int64_t cost) -> void { for (auto &e : g[cur]) { heaps[cur].push({e.cost, e.from, e.to}); } sub[cur].insert(cur); for (auto &e : tree[cur]) { if (e.to == par) continue; f(e.to, cur, e.cost); heaps[cur].meld(heaps[e.to]); hl::merge_technique(sub[cur], sub[cur], sub[e.to]); } if (par != -1) { while (not heaps[cur].empty()) { auto [c, i, j] = heaps[cur].top(); if ((sub[cur].find(i) != sub[cur].end() and sub[cur].find(j) != sub[cur].end()) or (i == cur and j == par) or (i == par and j == cur)) { heaps[cur].pop(); } else { break; } } if (not heaps[cur].empty()) { ans[index[{cur, par}]] = s - cost + std::get<0>(heaps[cur].top()); } else { ans[index[{cur, par}]] = -1; } } })(0, -1, 0); } for (auto x : ans) { std::cout << x << std::endl; } return 0; }