kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/aoj/CGL_7_C/main.test.cpp

Depends on

Code

#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_C"
#define ERROR 0.000001

#include <iomanip>
#include <iostream>
#include "Mylib/Geometry/Float/circumscribed_circle_of_triangle.cpp"
#include "Mylib/Geometry/Float/double_eps.cpp"
#include "Mylib/Geometry/Float/geometry_template.cpp"

namespace hl = haar_lib;

static constexpr long double eps = ERROR;
using D                          = hl::double_eps<long double, eps>;

int main() {
  hl::point<D> a, b, c;
  std::cin >> a >> b >> c;

  auto ans = hl::circumscribed_circle_of_triangle(a, b, c);
  std::cout << std::fixed << std::setprecision(12)
            << ans.center.x << " "
            << ans.center.y << " "
            << ans.radius << "\n";

  return 0;
}
#line 1 "test/aoj/CGL_7_C/main.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_C"
#define ERROR 0.000001

#include <iomanip>
#include <iostream>
#line 2 "Mylib/Geometry/Float/geometry_template.cpp"
#include <cmath>
#line 4 "Mylib/Geometry/Float/geometry_template.cpp"
#include <vector>

namespace haar_lib {
  template <typename T>
  struct vec {
    T x, y;
    vec() {}
    vec(T x, T y) : x(x), y(y) {}

    friend auto operator+(const vec &a, const vec &b) { return vec(a.x + b.x, a.y + b.y); }
    friend auto operator-(const vec &a, const vec &b) { return vec(a.x - b.x, a.y - b.y); }
    friend auto operator-(const vec &a) { return vec(-a.x, -a.y); }

    friend bool operator==(const vec &a, const vec &b) { return a.x == b.x and a.y == b.y; }
    friend bool operator!=(const vec &a, const vec &b) { return !(a == b); }
    friend bool operator<(const vec &a, const vec &b) { return a.x < b.x or (a.x == b.x and a.y < b.y); }

    friend std::istream &operator>>(std::istream &s, vec &a) {
      s >> a.x >> a.y;
      return s;
    }
  };

  template <typename T, typename U>
  auto operator*(const vec<T> &a, const U &k) { return vec<T>(a.x * k, a.y * k); }
  template <typename T, typename U>
  auto operator*(const U &k, const vec<T> &a) { return vec<T>(a.x * k, a.y * k); }
  template <typename T, typename U>
  auto operator/(const vec<T> &a, const U &k) { return vec<T>(a.x / k, a.y / k); }

  template <typename T>
  using point = vec<T>;

  template <typename T>
  T abs(const vec<T> &a) { return sqrt(a.x * a.x + a.y * a.y); }
  template <typename T>
  T abs_sq(const vec<T> &a) { return a.x * a.x + a.y * a.y; }

  template <typename T>
  T dot(const vec<T> &a, const vec<T> &b) { return a.x * b.x + a.y * b.y; }
  template <typename T>
  T cross(const vec<T> &a, const vec<T> &b) { return a.x * b.y - a.y * b.x; }

  template <typename T>
  auto unit(const vec<T> &a) { return a / abs(a); }
  template <typename T>
  auto normal(const vec<T> &p) { return vec<T>(-p.y, p.x); }

  template <typename T>
  auto polar(const T &r, const T &ang) { return vec<T>(r * cos(ang), r * sin(ang)); }

  template <typename T>
  T angle(const vec<T> &a, const vec<T> &b) { return atan2(b.y - a.y, b.x - a.x); }
  template <typename T>
  T phase(const vec<T> &a) { return atan2(a.y, a.x); }

  template <typename T>
  T angle_diff(const vec<T> &a, const vec<T> &b) {
    T r = phase(b) - phase(a);

    if (r < -M_PI)
      return r + 2 * M_PI;
    else if (r > M_PI)
      return r - 2 * M_PI;
    return r;
  }

  template <typename T>
  struct line {
    point<T> from, to;
    line() : from(), to() {}
    line(const point<T> &from, const point<T> &to) : from(from), to(to) {}
  };

  template <typename T>
  using segment = line<T>;

  template <typename T>
  auto unit(const line<T> &a) { return unit(a.to - a.from); }
  template <typename T>
  auto normal(const line<T> &a) { return normal(a.to - a.from); }

  template <typename T>
  auto diff(const segment<T> &a) { return a.to - a.from; }

  template <typename T>
  T abs(const segment<T> &a) { return abs(diff(a)); }

  template <typename T>
  T dot(const line<T> &a, const line<T> &b) { return dot(diff(a), diff(b)); }
  template <typename T>
  T cross(const line<T> &a, const line<T> &b) { return cross(diff(a), diff(b)); }

  template <typename T>
  using polygon = std::vector<point<T>>;

  template <typename T>
  struct circle {
    point<T> center;
    T radius;
    circle() : center(), radius(0) {}
    circle(const point<T> &center, T radius) : center(center), radius(radius) {}
  };

  template <typename T>
  std::ostream &operator<<(std::ostream &s, const vec<T> &a) {
    s << "(" << a.x << ", " << a.y << ")";
    return s;
  }

  template <typename T>
  std::ostream &operator<<(std::ostream &s, const line<T> &a) {
    s << "(" << a.from << " -> " << a.to << ")";
    return s;
  }

  template <typename T>
  std::ostream &operator<<(std::ostream &s, const circle<T> &a) {
    s << "("
      << "center: " << a.center << ", "
      << "radius: " << a.radius << ")";
    return s;
  }
}  // namespace haar_lib
#line 3 "Mylib/Geometry/Float/circumscribed_circle_of_triangle.cpp"

namespace haar_lib {
  template <typename T>
  circle<T> circumscribed_circle_of_triangle(const point<T> &a, const point<T> &b, const point<T> &c) {
    const T A = abs_sq(b - c), B = abs_sq(a - c), C = abs_sq(a - b), S = A + B + C;
    const T AA        = A * (S - A * 2.0);
    const T BB        = B * (S - B * 2.0);
    const T CC        = C * (S - C * 2.0);
    const auto center = (AA * a + BB * b + CC * c) / (AA + BB + CC);

    return circle<T>(
        center,
        abs(center - a));
  }
}  // namespace haar_lib
#line 4 "Mylib/Geometry/Float/double_eps.cpp"
#include <limits>

namespace haar_lib {
  template <typename T, const T &eps>
  struct double_eps {
    using value_type = T;

  private:
    T value_;

  public:
    double_eps() : value_(0) {}
    double_eps(T value_) : value_(value_) {}

    auto &operator=(const double_eps &rhs) {
      this->value_ = rhs.value_;
      return *this;
    }
    auto &operator+=(const double_eps &rhs) {
      this->value_ += rhs.value_;
      return *this;
    }
    auto &operator-=(const double_eps &rhs) {
      this->value_ -= rhs.value_;
      return *this;
    }
    auto &operator*=(const double_eps &rhs) {
      this->value_ *= rhs.value_;
      return *this;
    }
    auto &operator/=(const double_eps &rhs) {
      this->value_ /= rhs.value_;
      return *this;
    }

    auto operator+(const double_eps &rhs) const { return double_eps(this->value_ + rhs.value_); }
    auto operator-(const double_eps &rhs) const { return double_eps(this->value_ - rhs.value_); }
    auto operator*(const double_eps &rhs) const { return double_eps(this->value_ * rhs.value_); }
    auto operator/(const double_eps &rhs) const { return double_eps(this->value_ / rhs.value_); }

    bool operator==(const double_eps &rhs) const { return std::abs(this->value_ - rhs.value_) < eps; }
    bool operator!=(const double_eps &rhs) const { return !(*this == rhs); }
    bool operator<(const double_eps &rhs) const { return this->value_ - rhs.value_ < -eps; }
    bool operator<=(const double_eps &rhs) const { return this->value_ - rhs.value_ < eps; }
    bool operator>(const double_eps &rhs) const { return !(*this <= rhs); }
    bool operator>=(const double_eps &rhs) const { return !(*this < rhs); }

    auto operator-() const { return double_eps(-(this->value_)); }

    explicit operator double() const noexcept { return value_; }
    explicit operator long double() const noexcept { return value_; }

    friend std::ostream &operator<<(std::ostream &s, const double_eps &rhs) {
      s << rhs.value_;
      return s;
    }
    friend std::istream &operator>>(std::istream &s, double_eps &rhs) {
      s >> rhs.value_;
      return s;
    }

    friend double_eps sin(double_eps x) { return std::sin((T) x); }
    friend double_eps cos(double_eps x) { return std::cos((T) x); }
    friend double_eps tan(double_eps x) { return std::tan((T) x); }
    friend double_eps acos(double_eps x) { return std::acos((T) x); }
    friend double_eps atan2(double_eps y, double_eps x) { return std::atan2((T) y, (T) x); }
    friend double_eps abs(double_eps x) { return std::abs((T) x); }
    friend double_eps sqrt(double_eps x) { return std::sqrt(std::max<T>(0, (T) x)); }
  };
}  // namespace haar_lib

namespace std {
  template <typename T, const T &eps>
  class numeric_limits<haar_lib::double_eps<T, eps>> {
  public:
    static haar_lib::double_eps<T, eps> infinity() { return numeric_limits<T>::infinity(); }
    static haar_lib::double_eps<T, eps> min() { return numeric_limits<T>::min(); }
    static haar_lib::double_eps<T, eps> max() { return numeric_limits<T>::max(); }
    static haar_lib::double_eps<T, eps> lowest() { return numeric_limits<T>::lowest(); }
  };
}  // namespace std
#line 9 "test/aoj/CGL_7_C/main.test.cpp"

namespace hl = haar_lib;

static constexpr long double eps = ERROR;
using D                          = hl::double_eps<long double, eps>;

int main() {
  hl::point<D> a, b, c;
  std::cin >> a >> b >> c;

  auto ans = hl::circumscribed_circle_of_triangle(a, b, c);
  std::cout << std::fixed << std::setprecision(12)
            << ans.center.x << " "
            << ans.center.y << " "
            << ans.radius << "\n";

  return 0;
}
Back to top page