kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/aoj/CGL_7_D/main.test.cpp

Depends on

Code

#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D"
#define ERROR 0.000001

#include <algorithm>
#include <iomanip>
#include <iostream>
#include <vector>
#include "Mylib/Geometry/Float/double_eps.cpp"
#include "Mylib/Geometry/Float/geometry_template.cpp"
#include "Mylib/Geometry/Float/intersect_circle_line.cpp"
#include "Mylib/IO/input_tuples.cpp"

namespace hl = haar_lib;

static constexpr double eps = ERROR;
using D                     = hl::double_eps<double, eps>;

int main() {
  hl::circle<D> c;
  std::cin >> c.center >> c.radius;

  int q;
  std::cin >> q;

  for (auto [p0, p1] : hl::input_tuples<hl::point<D>, hl::point<D>>(q)) {
    hl::line<D> l(p0, p1);

    const auto s = hl::intersect_circle_line(c, l);
    auto ans     = s.crosspoints;

    std::sort(
        ans.begin(), ans.end(),
        [](const auto &a, const auto &b) { return a.x < b.x or (a.x == b.x and a.y < b.y); });

    std::cout << std::fixed << std::setprecision(12);

    if (s.is_tangent()) {
      std::cout << ans[0].x << " " << ans[0].y << " ";
      std::cout << ans[0].x << " " << ans[0].y << std::endl;
    } else if (s.is_crossed()) {
      std::cout << ans[0].x << " " << ans[0].y << " ";
      std::cout << ans[1].x << " " << ans[1].y << std::endl;
    }
  }

  return 0;
}
#line 1 "test/aoj/CGL_7_D/main.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D"
#define ERROR 0.000001

#include <algorithm>
#include <iomanip>
#include <iostream>
#include <vector>
#line 2 "Mylib/Geometry/Float/double_eps.cpp"
#include <cmath>
#line 4 "Mylib/Geometry/Float/double_eps.cpp"
#include <limits>

namespace haar_lib {
  template <typename T, const T &eps>
  struct double_eps {
    using value_type = T;

  private:
    T value_;

  public:
    double_eps() : value_(0) {}
    double_eps(T value_) : value_(value_) {}

    auto &operator=(const double_eps &rhs) {
      this->value_ = rhs.value_;
      return *this;
    }
    auto &operator+=(const double_eps &rhs) {
      this->value_ += rhs.value_;
      return *this;
    }
    auto &operator-=(const double_eps &rhs) {
      this->value_ -= rhs.value_;
      return *this;
    }
    auto &operator*=(const double_eps &rhs) {
      this->value_ *= rhs.value_;
      return *this;
    }
    auto &operator/=(const double_eps &rhs) {
      this->value_ /= rhs.value_;
      return *this;
    }

    auto operator+(const double_eps &rhs) const { return double_eps(this->value_ + rhs.value_); }
    auto operator-(const double_eps &rhs) const { return double_eps(this->value_ - rhs.value_); }
    auto operator*(const double_eps &rhs) const { return double_eps(this->value_ * rhs.value_); }
    auto operator/(const double_eps &rhs) const { return double_eps(this->value_ / rhs.value_); }

    bool operator==(const double_eps &rhs) const { return std::abs(this->value_ - rhs.value_) < eps; }
    bool operator!=(const double_eps &rhs) const { return !(*this == rhs); }
    bool operator<(const double_eps &rhs) const { return this->value_ - rhs.value_ < -eps; }
    bool operator<=(const double_eps &rhs) const { return this->value_ - rhs.value_ < eps; }
    bool operator>(const double_eps &rhs) const { return !(*this <= rhs); }
    bool operator>=(const double_eps &rhs) const { return !(*this < rhs); }

    auto operator-() const { return double_eps(-(this->value_)); }

    explicit operator double() const noexcept { return value_; }
    explicit operator long double() const noexcept { return value_; }

    friend std::ostream &operator<<(std::ostream &s, const double_eps &rhs) {
      s << rhs.value_;
      return s;
    }
    friend std::istream &operator>>(std::istream &s, double_eps &rhs) {
      s >> rhs.value_;
      return s;
    }

    friend double_eps sin(double_eps x) { return std::sin((T) x); }
    friend double_eps cos(double_eps x) { return std::cos((T) x); }
    friend double_eps tan(double_eps x) { return std::tan((T) x); }
    friend double_eps acos(double_eps x) { return std::acos((T) x); }
    friend double_eps atan2(double_eps y, double_eps x) { return std::atan2((T) y, (T) x); }
    friend double_eps abs(double_eps x) { return std::abs((T) x); }
    friend double_eps sqrt(double_eps x) { return std::sqrt(std::max<T>(0, (T) x)); }
  };
}  // namespace haar_lib

namespace std {
  template <typename T, const T &eps>
  class numeric_limits<haar_lib::double_eps<T, eps>> {
  public:
    static haar_lib::double_eps<T, eps> infinity() { return numeric_limits<T>::infinity(); }
    static haar_lib::double_eps<T, eps> min() { return numeric_limits<T>::min(); }
    static haar_lib::double_eps<T, eps> max() { return numeric_limits<T>::max(); }
    static haar_lib::double_eps<T, eps> lowest() { return numeric_limits<T>::lowest(); }
  };
}  // namespace std
#line 5 "Mylib/Geometry/Float/geometry_template.cpp"

namespace haar_lib {
  template <typename T>
  struct vec {
    T x, y;
    vec() {}
    vec(T x, T y) : x(x), y(y) {}

    friend auto operator+(const vec &a, const vec &b) { return vec(a.x + b.x, a.y + b.y); }
    friend auto operator-(const vec &a, const vec &b) { return vec(a.x - b.x, a.y - b.y); }
    friend auto operator-(const vec &a) { return vec(-a.x, -a.y); }

    friend bool operator==(const vec &a, const vec &b) { return a.x == b.x and a.y == b.y; }
    friend bool operator!=(const vec &a, const vec &b) { return !(a == b); }
    friend bool operator<(const vec &a, const vec &b) { return a.x < b.x or (a.x == b.x and a.y < b.y); }

    friend std::istream &operator>>(std::istream &s, vec &a) {
      s >> a.x >> a.y;
      return s;
    }
  };

  template <typename T, typename U>
  auto operator*(const vec<T> &a, const U &k) { return vec<T>(a.x * k, a.y * k); }
  template <typename T, typename U>
  auto operator*(const U &k, const vec<T> &a) { return vec<T>(a.x * k, a.y * k); }
  template <typename T, typename U>
  auto operator/(const vec<T> &a, const U &k) { return vec<T>(a.x / k, a.y / k); }

  template <typename T>
  using point = vec<T>;

  template <typename T>
  T abs(const vec<T> &a) { return sqrt(a.x * a.x + a.y * a.y); }
  template <typename T>
  T abs_sq(const vec<T> &a) { return a.x * a.x + a.y * a.y; }

  template <typename T>
  T dot(const vec<T> &a, const vec<T> &b) { return a.x * b.x + a.y * b.y; }
  template <typename T>
  T cross(const vec<T> &a, const vec<T> &b) { return a.x * b.y - a.y * b.x; }

  template <typename T>
  auto unit(const vec<T> &a) { return a / abs(a); }
  template <typename T>
  auto normal(const vec<T> &p) { return vec<T>(-p.y, p.x); }

  template <typename T>
  auto polar(const T &r, const T &ang) { return vec<T>(r * cos(ang), r * sin(ang)); }

  template <typename T>
  T angle(const vec<T> &a, const vec<T> &b) { return atan2(b.y - a.y, b.x - a.x); }
  template <typename T>
  T phase(const vec<T> &a) { return atan2(a.y, a.x); }

  template <typename T>
  T angle_diff(const vec<T> &a, const vec<T> &b) {
    T r = phase(b) - phase(a);

    if (r < -M_PI)
      return r + 2 * M_PI;
    else if (r > M_PI)
      return r - 2 * M_PI;
    return r;
  }

  template <typename T>
  struct line {
    point<T> from, to;
    line() : from(), to() {}
    line(const point<T> &from, const point<T> &to) : from(from), to(to) {}
  };

  template <typename T>
  using segment = line<T>;

  template <typename T>
  auto unit(const line<T> &a) { return unit(a.to - a.from); }
  template <typename T>
  auto normal(const line<T> &a) { return normal(a.to - a.from); }

  template <typename T>
  auto diff(const segment<T> &a) { return a.to - a.from; }

  template <typename T>
  T abs(const segment<T> &a) { return abs(diff(a)); }

  template <typename T>
  T dot(const line<T> &a, const line<T> &b) { return dot(diff(a), diff(b)); }
  template <typename T>
  T cross(const line<T> &a, const line<T> &b) { return cross(diff(a), diff(b)); }

  template <typename T>
  using polygon = std::vector<point<T>>;

  template <typename T>
  struct circle {
    point<T> center;
    T radius;
    circle() : center(), radius(0) {}
    circle(const point<T> &center, T radius) : center(center), radius(radius) {}
  };

  template <typename T>
  std::ostream &operator<<(std::ostream &s, const vec<T> &a) {
    s << "(" << a.x << ", " << a.y << ")";
    return s;
  }

  template <typename T>
  std::ostream &operator<<(std::ostream &s, const line<T> &a) {
    s << "(" << a.from << " -> " << a.to << ")";
    return s;
  }

  template <typename T>
  std::ostream &operator<<(std::ostream &s, const circle<T> &a) {
    s << "("
      << "center: " << a.center << ", "
      << "radius: " << a.radius << ")";
    return s;
  }
}  // namespace haar_lib
#line 3 "Mylib/Geometry/Float/distance_line_point.cpp"

namespace haar_lib {
  template <typename T>
  T distance_line_point(const line<T> &l, const point<T> &p) {
    return abs(cross(diff(l), p - l.from) / abs(l));
  }
}  // namespace haar_lib
#line 5 "Mylib/Geometry/Float/intersect_circle_line.cpp"

namespace haar_lib {
  namespace intersect_circle_line_impl {
    enum class status_t { OUTSIDE,
                          TANGENT,
                          CROSSED };
    template <typename T>
    struct result {
      status_t status;
      std::vector<point<T>> crosspoints;
      bool is_outside() const { return status == status_t::OUTSIDE; }
      bool is_tangent() const { return status == status_t::TANGENT; }
      bool is_crossed() const { return status == status_t::CROSSED; }
    };
  }  // namespace intersect_circle_line_impl

  template <typename T>
  auto intersect_circle_line(const circle<T> &c, const line<T> &l) {
    using namespace intersect_circle_line_impl;

    const T d = distance_line_point(l, c.center);

    if (d > c.radius) {
      return result<T>({status_t::OUTSIDE, {}});
    }

    const auto n = normal(l);
    const auto b = l.from + diff(l) * cross(n, c.center + n - l.from) / cross(n, diff(l));

    if (d == c.radius) {
      return result<T>({status_t::TANGENT, {b}});
    }

    const T a = sqrt(c.radius * c.radius - d * d);
    return result<T>({status_t::CROSSED, {b + unit(l) * a, b - unit(l) * a}});
  }
}  // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#include <utility>
#line 6 "Mylib/IO/input_tuple.cpp"

namespace haar_lib {
  template <typename T, size_t... I>
  static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
    (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
  }

  template <typename T, typename U>
  std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
    s >> value.first >> value.second;
    return s;
  }

  template <typename... Args>
  std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
    input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
    return s;
  }
}  // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"

namespace haar_lib {
  template <typename... Args>
  class InputTuples {
    struct iter {
      using value_type = std::tuple<Args...>;
      value_type value;
      bool fetched = false;
      int N, c = 0;

      value_type operator*() {
        if (not fetched) {
          std::cin >> value;
        }
        return value;
      }

      void operator++() {
        ++c;
        fetched = false;
      }

      bool operator!=(iter &) const {
        return c < N;
      }

      iter(int N) : N(N) {}
    };

    int N;

  public:
    InputTuples(int N) : N(N) {}

    iter begin() const { return iter(N); }
    iter end() const { return iter(N); }
  };

  template <typename... Args>
  auto input_tuples(int N) {
    return InputTuples<Args...>(N);
  }
}  // namespace haar_lib
#line 12 "test/aoj/CGL_7_D/main.test.cpp"

namespace hl = haar_lib;

static constexpr double eps = ERROR;
using D                     = hl::double_eps<double, eps>;

int main() {
  hl::circle<D> c;
  std::cin >> c.center >> c.radius;

  int q;
  std::cin >> q;

  for (auto [p0, p1] : hl::input_tuples<hl::point<D>, hl::point<D>>(q)) {
    hl::line<D> l(p0, p1);

    const auto s = hl::intersect_circle_line(c, l);
    auto ans     = s.crosspoints;

    std::sort(
        ans.begin(), ans.end(),
        [](const auto &a, const auto &b) { return a.x < b.x or (a.x == b.x and a.y < b.y); });

    std::cout << std::fixed << std::setprecision(12);

    if (s.is_tangent()) {
      std::cout << ans[0].x << " " << ans[0].y << " ";
      std::cout << ans[0].x << " " << ans[0].y << std::endl;
    } else if (s.is_crossed()) {
      std::cout << ans[0].x << " " << ans[0].y << " ";
      std::cout << ans[1].x << " " << ans[1].y << std::endl;
    }
  }

  return 0;
}
Back to top page