#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DPL_2_B" #include <iostream> #include "Mylib/Graph/Template/graph.cpp" #include "Mylib/Graph/chinese_postman_problem.cpp" namespace hl = haar_lib; int main() { int V, E; std::cin >> V >> E; hl::graph<int> g(V); g.read<0, false>(E); auto ans = hl::chinese_postman_problem(g); std::cout << ans << std::endl; return 0; }
#line 1 "test/aoj/DPL_2_B/main.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DPL_2_B" #include <iostream> #line 3 "Mylib/Graph/Template/graph.cpp" #include <vector> namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 2 "Mylib/Graph/chinese_postman_problem.cpp" #include <algorithm> #line 5 "Mylib/Graph/chinese_postman_problem.cpp" namespace haar_lib { template <typename T> T chinese_postman_problem(const graph<T> &g) { const int n = g.size(); T ret = 0; // 頂点間の最短距離を求める。 std::vector<std::vector<int>> dist(n, std::vector<T>(n, -1)); for (int i = 0; i < n; ++i) dist[i][i] = 0; for (int i = 0; i < n; ++i) { for (auto &e : g[i]) { if (dist[e.from][e.to] == -1) dist[e.from][e.to] = e.cost; else dist[e.from][e.to] = std::min(dist[e.from][e.to], e.cost); } } for (int k = 0; k < n; ++k) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (dist[i][k] >= 0 and dist[k][j] >= 0) { if (dist[i][j] == -1) dist[i][j] = dist[i][k] + dist[k][j]; else dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]); } } } } // 奇数次数の頂点を列挙 std::vector<int> odd; for (int i = 0; i < n; ++i) { if (g[i].size() % 2) odd.push_back(i); } const int m = odd.size(); // 奇数次数の頂点間の最小マッチングを求める。 std::vector<T> dp(1 << m, -1); dp[0] = 0; for (int i = 0; i < (1 << m); ++i) { for (int j = 0; j < m; ++j) { for (int k = 0; k < j; ++k) { if ((i & (1 << j)) and (i & (1 << k))) { if (dp[i] == -1) dp[i] = dp[i ^ (1 << j) ^ (1 << k)] + dist[odd[j]][odd[k]]; else dp[i] = std::min(dp[i], dp[i ^ (1 << j) ^ (1 << k)] + dist[odd[j]][odd[k]]); } } } } // 返り値を計算 for (int i = 0; i < n; ++i) { for (auto &e : g[i]) if (e.from <= e.to) ret += e.cost; } ret += dp[(1 << m) - 1]; return ret; } } // namespace haar_lib #line 6 "test/aoj/DPL_2_B/main.test.cpp" namespace hl = haar_lib; int main() { int V, E; std::cin >> V >> E; hl::graph<int> g(V); g.read<0, false>(E); auto ans = hl::chinese_postman_problem(g); std::cout << ans << std::endl; return 0; }