kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/aoj/DPL_5_G/main.test.cpp

Depends on

Code

#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DPL_5_G"

#include <iostream>
#include "Mylib/Combinatorics/bell_number.cpp"
#include "Mylib/Combinatorics/factorial_table.cpp"
#include "Mylib/Number/Mint/mint.cpp"

namespace hl = haar_lib;

using mint           = hl::modint<1000000007>;
const static auto ft = hl::factorial_table<mint>(3000);

int main() {
  int N, K;
  std::cin >> N >> K;

  std::cout << hl::bell_number<ft>(N, K) << std::endl;

  return 0;
}
#line 1 "test/aoj/DPL_5_G/main.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DPL_5_G"

#include <iostream>
#line 2 "Mylib/Combinatorics/bell_number.cpp"
#include <algorithm>
#include <vector>
#line 2 "Mylib/Combinatorics/factorial_table.cpp"
#include <cassert>
#include <cstdint>
#line 5 "Mylib/Combinatorics/factorial_table.cpp"

namespace haar_lib {
  template <typename T>
  class factorial_table {
  public:
    using value_type = T;

  private:
    int N_;
    std::vector<T> f_table_, if_table_;

  public:
    factorial_table() {}
    factorial_table(int N) : N_(N) {
      f_table_.assign(N + 1, 1);
      if_table_.assign(N + 1, 1);

      for (int i = 1; i <= N; ++i) {
        f_table_[i] = f_table_[i - 1] * i;
      }

      if_table_[N] = f_table_[N].inv();

      for (int i = N; --i >= 0;) {
        if_table_[i] = if_table_[i + 1] * (i + 1);
      }
    }

    T factorial(int64_t i) const {
      assert(0 <= i and i <= N_);
      return f_table_[i];
    }

    T inv_factorial(int64_t i) const {
      assert(0 <= i and i <= N_);
      return if_table_[i];
    }

    T P(int64_t n, int64_t k) const {
      if (n < k or n < 0 or k < 0) return 0;
      return factorial(n) * inv_factorial(n - k);
    }

    T C(int64_t n, int64_t k) const {
      if (n < k or n < 0 or k < 0) return 0;
      return P(n, k) * inv_factorial(k);
    }

    T H(int64_t n, int64_t k) const {
      if (n == 0 and k == 0) return 1;
      return C(n + k - 1, k);
    }
  };
}  // namespace haar_lib
#line 5 "Mylib/Combinatorics/bell_number.cpp"

namespace haar_lib {
  template <
      const auto &ft,
      typename T = typename std::remove_reference_t<decltype(ft)>::value_type>
  T bell_number(int n, int k) {
    if (n == 0) return T(1);

    k = std::min(k, n);

    std::vector<T> t(k, 1);

    for (int i = 1; i < k; ++i) {
      if (i % 2 == 0)
        t[i] = t[i - 1] + ft.inv_factorial(i);
      else
        t[i] = t[i - 1] - ft.inv_factorial(i);
    }

    T ret = 0;
    for (int i = 1; i <= k; ++i) {
      ret += t[k - i] * T::pow(i, n) * ft.inv_factorial(i);
    }

    return ret;
  }
}  // namespace haar_lib
#line 3 "Mylib/Number/Mint/mint.cpp"
#include <utility>

namespace haar_lib {
  template <int32_t M>
  class modint {
    uint32_t val_;

  public:
    constexpr static auto mod() { return M; }

    constexpr modint() : val_(0) {}
    constexpr modint(int64_t n) {
      if (n >= M)
        val_ = n % M;
      else if (n < 0)
        val_ = n % M + M;
      else
        val_ = n;
    }

    constexpr auto &operator=(const modint &a) {
      val_ = a.val_;
      return *this;
    }
    constexpr auto &operator+=(const modint &a) {
      if (val_ + a.val_ >= M)
        val_ = (uint64_t) val_ + a.val_ - M;
      else
        val_ += a.val_;
      return *this;
    }
    constexpr auto &operator-=(const modint &a) {
      if (val_ < a.val_) val_ += M;
      val_ -= a.val_;
      return *this;
    }
    constexpr auto &operator*=(const modint &a) {
      val_ = (uint64_t) val_ * a.val_ % M;
      return *this;
    }
    constexpr auto &operator/=(const modint &a) {
      val_ = (uint64_t) val_ * a.inv().val_ % M;
      return *this;
    }

    constexpr auto operator+(const modint &a) const { return modint(*this) += a; }
    constexpr auto operator-(const modint &a) const { return modint(*this) -= a; }
    constexpr auto operator*(const modint &a) const { return modint(*this) *= a; }
    constexpr auto operator/(const modint &a) const { return modint(*this) /= a; }

    constexpr bool operator==(const modint &a) const { return val_ == a.val_; }
    constexpr bool operator!=(const modint &a) const { return val_ != a.val_; }

    constexpr auto &operator++() {
      *this += 1;
      return *this;
    }
    constexpr auto &operator--() {
      *this -= 1;
      return *this;
    }

    constexpr auto operator++(int) {
      auto t = *this;
      *this += 1;
      return t;
    }
    constexpr auto operator--(int) {
      auto t = *this;
      *this -= 1;
      return t;
    }

    constexpr static modint pow(int64_t n, int64_t p) {
      if (p < 0) return pow(n, -p).inv();

      int64_t ret = 1, e = n % M;
      for (; p; (e *= e) %= M, p >>= 1)
        if (p & 1) (ret *= e) %= M;
      return ret;
    }

    constexpr static modint inv(int64_t a) {
      int64_t b = M, u = 1, v = 0;

      while (b) {
        int64_t t = a / b;
        a -= t * b;
        std::swap(a, b);
        u -= t * v;
        std::swap(u, v);
      }

      u %= M;
      if (u < 0) u += M;

      return u;
    }

    constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); }

    constexpr auto pow(int64_t p) const { return pow(val_, p); }
    constexpr auto inv() const { return inv(val_); }

    friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); }

    friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; }
    friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; }
    friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; }
    friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; }

    friend std::istream &operator>>(std::istream &s, modint &a) {
      s >> a.val_;
      return s;
    }
    friend std::ostream &operator<<(std::ostream &s, const modint &a) {
      s << a.val_;
      return s;
    }

    template <int N>
    static auto div() {
      static auto value = inv(N);
      return value;
    }

    explicit operator int32_t() const noexcept { return val_; }
    explicit operator int64_t() const noexcept { return val_; }
  };
}  // namespace haar_lib
#line 7 "test/aoj/DPL_5_G/main.test.cpp"

namespace hl = haar_lib;

using mint           = hl::modint<1000000007>;
const static auto ft = hl::factorial_table<mint>(3000);

int main() {
  int N, K;
  std::cin >> N >> K;

  std::cout << hl::bell_number<ft>(N, K) << std::endl;

  return 0;
}
Back to top page