#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DPL_5_G" #include <iostream> #include "Mylib/Combinatorics/bell_number.cpp" #include "Mylib/Combinatorics/factorial_table.cpp" #include "Mylib/Number/Mint/mint.cpp" namespace hl = haar_lib; using mint = hl::modint<1000000007>; const static auto ft = hl::factorial_table<mint>(3000); int main() { int N, K; std::cin >> N >> K; std::cout << hl::bell_number<ft>(N, K) << std::endl; return 0; }
#line 1 "test/aoj/DPL_5_G/main.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DPL_5_G" #include <iostream> #line 2 "Mylib/Combinatorics/bell_number.cpp" #include <algorithm> #include <vector> #line 2 "Mylib/Combinatorics/factorial_table.cpp" #include <cassert> #include <cstdint> #line 5 "Mylib/Combinatorics/factorial_table.cpp" namespace haar_lib { template <typename T> class factorial_table { public: using value_type = T; private: int N_; std::vector<T> f_table_, if_table_; public: factorial_table() {} factorial_table(int N) : N_(N) { f_table_.assign(N + 1, 1); if_table_.assign(N + 1, 1); for (int i = 1; i <= N; ++i) { f_table_[i] = f_table_[i - 1] * i; } if_table_[N] = f_table_[N].inv(); for (int i = N; --i >= 0;) { if_table_[i] = if_table_[i + 1] * (i + 1); } } T factorial(int64_t i) const { assert(0 <= i and i <= N_); return f_table_[i]; } T inv_factorial(int64_t i) const { assert(0 <= i and i <= N_); return if_table_[i]; } T P(int64_t n, int64_t k) const { if (n < k or n < 0 or k < 0) return 0; return factorial(n) * inv_factorial(n - k); } T C(int64_t n, int64_t k) const { if (n < k or n < 0 or k < 0) return 0; return P(n, k) * inv_factorial(k); } T H(int64_t n, int64_t k) const { if (n == 0 and k == 0) return 1; return C(n + k - 1, k); } }; } // namespace haar_lib #line 5 "Mylib/Combinatorics/bell_number.cpp" namespace haar_lib { template < const auto &ft, typename T = typename std::remove_reference_t<decltype(ft)>::value_type> T bell_number(int n, int k) { if (n == 0) return T(1); k = std::min(k, n); std::vector<T> t(k, 1); for (int i = 1; i < k; ++i) { if (i % 2 == 0) t[i] = t[i - 1] + ft.inv_factorial(i); else t[i] = t[i - 1] - ft.inv_factorial(i); } T ret = 0; for (int i = 1; i <= k; ++i) { ret += t[k - i] * T::pow(i, n) * ft.inv_factorial(i); } return ret; } } // namespace haar_lib #line 3 "Mylib/Number/Mint/mint.cpp" #include <utility> namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod() { return M; } constexpr modint() : val_(0) {} constexpr modint(int64_t n) { if (n >= M) val_ = n % M; else if (n < 0) val_ = n % M + M; else val_ = n; } constexpr auto &operator=(const modint &a) { val_ = a.val_; return *this; } constexpr auto &operator+=(const modint &a) { if (val_ + a.val_ >= M) val_ = (uint64_t) val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto &operator-=(const modint &a) { if (val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto &operator*=(const modint &a) { val_ = (uint64_t) val_ * a.val_ % M; return *this; } constexpr auto &operator/=(const modint &a) { val_ = (uint64_t) val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const { return modint(*this) += a; } constexpr auto operator-(const modint &a) const { return modint(*this) -= a; } constexpr auto operator*(const modint &a) const { return modint(*this) *= a; } constexpr auto operator/(const modint &a) const { return modint(*this) /= a; } constexpr bool operator==(const modint &a) const { return val_ == a.val_; } constexpr bool operator!=(const modint &a) const { return val_ != a.val_; } constexpr auto &operator++() { *this += 1; return *this; } constexpr auto &operator--() { *this -= 1; return *this; } constexpr auto operator++(int) { auto t = *this; *this += 1; return t; } constexpr auto operator--(int) { auto t = *this; *this -= 1; return t; } constexpr static modint pow(int64_t n, int64_t p) { if (p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for (; p; (e *= e) %= M, p >>= 1) if (p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a) { int64_t b = M, u = 1, v = 0; while (b) { int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if (u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); } constexpr auto pow(int64_t p) const { return pow(val_, p); } constexpr auto inv() const { return inv(val_); } friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); } friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; } friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; } friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; } friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; } friend std::istream &operator>>(std::istream &s, modint &a) { s >> a.val_; return s; } friend std::ostream &operator<<(std::ostream &s, const modint &a) { s << a.val_; return s; } template <int N> static auto div() { static auto value = inv(N); return value; } explicit operator int32_t() const noexcept { return val_; } explicit operator int64_t() const noexcept { return val_; } }; } // namespace haar_lib #line 7 "test/aoj/DPL_5_G/main.test.cpp" namespace hl = haar_lib; using mint = hl::modint<1000000007>; const static auto ft = hl::factorial_table<mint>(3000); int main() { int N, K; std::cin >> N >> K; std::cout << hl::bell_number<ft>(N, K) << std::endl; return 0; }