kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/yosupo-judge/enumerate_triangles/main.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_triangles"

#include <iostream>

#include "Mylib/Graph/Template/graph.cpp"
#include "Mylib/Graph/enumerate_triangles.cpp"
#include "Mylib/IO/input_vector.cpp"
#include "Mylib/Number/Mint/mint.cpp"

namespace hl = haar_lib;

using mint = hl::modint<998244353>;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int N, M;
  std::cin >> N >> M;
  auto x = hl::input_vector<mint>(N);

  hl::graph<int> g(N);
  g.read<0, false, false>(M);

  auto res = hl::enumerate_triangles(g);
  mint ans = 0;
  for (auto [i, j, k] : res) ans += x[i] * x[j] * x[k];

  std::cout << ans << "\n";

  return 0;
}
#line 1 "test/yosupo-judge/enumerate_triangles/main.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_triangles"

#include <iostream>

#line 3 "Mylib/Graph/Template/graph.cpp"
#include <vector>

namespace haar_lib {
  template <typename T>
  struct edge {
    int from, to;
    T cost;
    int index = -1;
    edge() {}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
  };

  template <typename T>
  struct graph {
    using weight_type = T;
    using edge_type   = edge<T>;

    std::vector<std::vector<edge<T>>> data;

    auto& operator[](size_t i) { return data[i]; }
    const auto& operator[](size_t i) const { return data[i]; }

    auto begin() const { return data.begin(); }
    auto end() const { return data.end(); }

    graph() {}
    graph(int N) : data(N) {}

    bool empty() const { return data.empty(); }
    int size() const { return data.size(); }

    void add_edge(int i, int j, T w, int index = -1) {
      data[i].emplace_back(i, j, w, index);
    }

    void add_undirected(int i, int j, T w, int index = -1) {
      add_edge(i, j, w, index);
      add_edge(j, i, w, index);
    }

    template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
    void read(int M) {
      for (int i = 0; i < M; ++i) {
        int u, v;
        std::cin >> u >> v;
        u -= I;
        v -= I;
        T w = 1;
        if (WEIGHTED) std::cin >> w;
        if (DIRECTED)
          add_edge(u, v, w, i);
        else
          add_undirected(u, v, w, i);
      }
    }
  };

  template <typename T>
  using tree = graph<T>;
}  // namespace haar_lib
#line 2 "Mylib/Graph/enumerate_triangles.cpp"
#include <tuple>
#include <unordered_set>
#line 6 "Mylib/Graph/enumerate_triangles.cpp"

namespace haar_lib {
  template <typename T>
  std::vector<std::tuple<int, int, int>> enumerate_triangles(const graph<T> &g) {
    const int N = g.size();
    std::vector<std::tuple<int, int, int>> ret;

    std::vector<std::unordered_set<int>> adjacent(N);

    for (int i = 0; i < N; ++i) {
      for (auto &e : g[i]) {
        if (g[e.from].size() < g[e.to].size()) {
          adjacent[e.from].insert(e.to);
        } else if (g[e.from].size() == g[e.to].size()) {
          if (e.from < e.to) {
            adjacent[e.from].insert(e.to);
          }
        }
      }
    }

    for (int i = 0; i < N; ++i) {
      for (int j : adjacent[i]) {
        for (int k : adjacent[j]) {
          if (adjacent[i].find(k) != adjacent[i].end()) {
            ret.emplace_back(i, j, k);
          }
        }
      }
    }

    return ret;
  }
}  // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"

namespace haar_lib {
  template <typename T>
  std::vector<T> input_vector(int N) {
    std::vector<T> ret(N);
    for (int i = 0; i < N; ++i) std::cin >> ret[i];
    return ret;
  }

  template <typename T>
  std::vector<std::vector<T>> input_vector(int N, int M) {
    std::vector<std::vector<T>> ret(N);
    for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
    return ret;
  }
}  // namespace haar_lib
#line 3 "Mylib/Number/Mint/mint.cpp"
#include <utility>

namespace haar_lib {
  template <int32_t M>
  class modint {
    uint32_t val_;

  public:
    constexpr static auto mod() { return M; }

    constexpr modint() : val_(0) {}
    constexpr modint(int64_t n) {
      if (n >= M)
        val_ = n % M;
      else if (n < 0)
        val_ = n % M + M;
      else
        val_ = n;
    }

    constexpr auto &operator=(const modint &a) {
      val_ = a.val_;
      return *this;
    }
    constexpr auto &operator+=(const modint &a) {
      if (val_ + a.val_ >= M)
        val_ = (uint64_t) val_ + a.val_ - M;
      else
        val_ += a.val_;
      return *this;
    }
    constexpr auto &operator-=(const modint &a) {
      if (val_ < a.val_) val_ += M;
      val_ -= a.val_;
      return *this;
    }
    constexpr auto &operator*=(const modint &a) {
      val_ = (uint64_t) val_ * a.val_ % M;
      return *this;
    }
    constexpr auto &operator/=(const modint &a) {
      val_ = (uint64_t) val_ * a.inv().val_ % M;
      return *this;
    }

    constexpr auto operator+(const modint &a) const { return modint(*this) += a; }
    constexpr auto operator-(const modint &a) const { return modint(*this) -= a; }
    constexpr auto operator*(const modint &a) const { return modint(*this) *= a; }
    constexpr auto operator/(const modint &a) const { return modint(*this) /= a; }

    constexpr bool operator==(const modint &a) const { return val_ == a.val_; }
    constexpr bool operator!=(const modint &a) const { return val_ != a.val_; }

    constexpr auto &operator++() {
      *this += 1;
      return *this;
    }
    constexpr auto &operator--() {
      *this -= 1;
      return *this;
    }

    constexpr auto operator++(int) {
      auto t = *this;
      *this += 1;
      return t;
    }
    constexpr auto operator--(int) {
      auto t = *this;
      *this -= 1;
      return t;
    }

    constexpr static modint pow(int64_t n, int64_t p) {
      if (p < 0) return pow(n, -p).inv();

      int64_t ret = 1, e = n % M;
      for (; p; (e *= e) %= M, p >>= 1)
        if (p & 1) (ret *= e) %= M;
      return ret;
    }

    constexpr static modint inv(int64_t a) {
      int64_t b = M, u = 1, v = 0;

      while (b) {
        int64_t t = a / b;
        a -= t * b;
        std::swap(a, b);
        u -= t * v;
        std::swap(u, v);
      }

      u %= M;
      if (u < 0) u += M;

      return u;
    }

    constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); }

    constexpr auto pow(int64_t p) const { return pow(val_, p); }
    constexpr auto inv() const { return inv(val_); }

    friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); }

    friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; }
    friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; }
    friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; }
    friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; }

    friend std::istream &operator>>(std::istream &s, modint &a) {
      s >> a.val_;
      return s;
    }
    friend std::ostream &operator<<(std::ostream &s, const modint &a) {
      s << a.val_;
      return s;
    }

    template <int N>
    static auto div() {
      static auto value = inv(N);
      return value;
    }

    explicit operator int32_t() const noexcept { return val_; }
    explicit operator int64_t() const noexcept { return val_; }
  };
}  // namespace haar_lib
#line 9 "test/yosupo-judge/enumerate_triangles/main.test.cpp"

namespace hl = haar_lib;

using mint = hl::modint<998244353>;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int N, M;
  std::cin >> N >> M;
  auto x = hl::input_vector<mint>(N);

  hl::graph<int> g(N);
  g.read<0, false, false>(M);

  auto res = hl::enumerate_triangles(g);
  mint ans = 0;
  for (auto [i, j, k] : res) ans += x[i] * x[j] * x[k];

  std::cout << ans << "\n";

  return 0;
}
Back to top page