#line 1 "test/yosupo-judge/multipoint_evaluation/main.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/multipoint_evaluation"
#include <iostream>
#line 2 "Mylib/Convolution/ntt_convolution.cpp"
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>
#line 4 "Mylib/Number/Mint/mint.cpp"
namespace haar_lib {
template <int32_t M>
class modint {
uint32_t val_;
public:
constexpr static auto mod() { return M; }
constexpr modint() : val_(0) {}
constexpr modint(int64_t n) {
if (n >= M)
val_ = n % M;
else if (n < 0)
val_ = n % M + M;
else
val_ = n;
}
constexpr auto &operator=(const modint &a) {
val_ = a.val_;
return *this;
}
constexpr auto &operator+=(const modint &a) {
if (val_ + a.val_ >= M)
val_ = (uint64_t) val_ + a.val_ - M;
else
val_ += a.val_;
return *this;
}
constexpr auto &operator-=(const modint &a) {
if (val_ < a.val_) val_ += M;
val_ -= a.val_;
return *this;
}
constexpr auto &operator*=(const modint &a) {
val_ = (uint64_t) val_ * a.val_ % M;
return *this;
}
constexpr auto &operator/=(const modint &a) {
val_ = (uint64_t) val_ * a.inv().val_ % M;
return *this;
}
constexpr auto operator+(const modint &a) const { return modint(*this) += a; }
constexpr auto operator-(const modint &a) const { return modint(*this) -= a; }
constexpr auto operator*(const modint &a) const { return modint(*this) *= a; }
constexpr auto operator/(const modint &a) const { return modint(*this) /= a; }
constexpr bool operator==(const modint &a) const { return val_ == a.val_; }
constexpr bool operator!=(const modint &a) const { return val_ != a.val_; }
constexpr auto &operator++() {
*this += 1;
return *this;
}
constexpr auto &operator--() {
*this -= 1;
return *this;
}
constexpr auto operator++(int) {
auto t = *this;
*this += 1;
return t;
}
constexpr auto operator--(int) {
auto t = *this;
*this -= 1;
return t;
}
constexpr static modint pow(int64_t n, int64_t p) {
if (p < 0) return pow(n, -p).inv();
int64_t ret = 1, e = n % M;
for (; p; (e *= e) %= M, p >>= 1)
if (p & 1) (ret *= e) %= M;
return ret;
}
constexpr static modint inv(int64_t a) {
int64_t b = M, u = 1, v = 0;
while (b) {
int64_t t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
u %= M;
if (u < 0) u += M;
return u;
}
constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); }
constexpr auto pow(int64_t p) const { return pow(val_, p); }
constexpr auto inv() const { return inv(val_); }
friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); }
friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; }
friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; }
friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; }
friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; }
friend std::istream &operator>>(std::istream &s, modint &a) {
s >> a.val_;
return s;
}
friend std::ostream &operator<<(std::ostream &s, const modint &a) {
s << a.val_;
return s;
}
template <int N>
static auto div() {
static auto value = inv(N);
return value;
}
explicit operator int32_t() const noexcept { return val_; }
explicit operator int64_t() const noexcept { return val_; }
};
} // namespace haar_lib
#line 7 "Mylib/Convolution/ntt_convolution.cpp"
namespace haar_lib {
template <typename T, int PRIM_ROOT, int MAX_SIZE>
class number_theoretic_transform {
public:
using value_type = T;
constexpr static int primitive_root = PRIM_ROOT;
constexpr static int max_size = MAX_SIZE;
private:
const int MAX_POWER_;
std::vector<T> BASE_, INV_BASE_;
public:
number_theoretic_transform() : MAX_POWER_(__builtin_ctz(MAX_SIZE)),
BASE_(MAX_POWER_ + 1),
INV_BASE_(MAX_POWER_ + 1) {
static_assert((MAX_SIZE & (MAX_SIZE - 1)) == 0, "MAX_SIZE must be power of 2.");
static_assert((T::mod() - 1) % MAX_SIZE == 0);
T t = T::pow(PRIM_ROOT, (T::mod() - 1) >> (MAX_POWER_ + 2));
T s = t.inv();
for (int i = MAX_POWER_; --i >= 0;) {
t *= t;
s *= s;
BASE_[i] = -t;
INV_BASE_[i] = -s;
}
}
void run(std::vector<T> &f, bool INVERSE = false) const {
const int n = f.size();
assert((n & (n - 1)) == 0 and n <= MAX_SIZE); // データ数は2の冪乗個
if (INVERSE) {
for (int b = 1; b < n; b <<= 1) {
T w = 1;
for (int j = 0, k = 1; j < n; j += 2 * b, ++k) {
for (int i = 0; i < b; ++i) {
const auto s = f[i + j];
const auto t = f[i + j + b];
f[i + j] = s + t;
f[i + j + b] = (s - t) * w;
}
w *= INV_BASE_[__builtin_ctz(k)];
}
}
const T t = T::inv(n);
for (auto &x : f) x *= t;
} else {
for (int b = n >> 1; b; b >>= 1) {
T w = 1;
for (int j = 0, k = 1; j < n; j += 2 * b, ++k) {
for (int i = 0; i < b; ++i) {
const auto s = f[i + j];
const auto t = f[i + j + b] * w;
f[i + j] = s + t;
f[i + j + b] = s - t;
}
w *= BASE_[__builtin_ctz(k)];
}
}
}
}
template <typename U>
std::vector<T> convolve(std::vector<U> f, std::vector<U> g, bool is_same = false) const {
const int m = f.size() + g.size() - 1;
int n = 1;
while (n < m) n *= 2;
std::vector<T> f2(n);
for (int i = 0; i < (int) f.size(); ++i) f2[i] = (int64_t) f[i];
run(f2);
if (is_same) {
for (int i = 0; i < n; ++i) f2[i] *= f2[i];
run(f2, true);
} else {
std::vector<T> g2(n);
for (int i = 0; i < (int) g.size(); ++i) g2[i] = (int64_t) g[i];
run(g2);
for (int i = 0; i < n; ++i) f2[i] *= g2[i];
run(f2, true);
}
return f2;
}
template <typename U>
std::vector<T> operator()(std::vector<U> f, std::vector<U> g, bool is_same = false) const {
return convolve(f, g, is_same);
}
};
template <typename T>
std::vector<T> convolve_general_mod(std::vector<T> f, std::vector<T> g) {
static constexpr int M1 = 167772161, P1 = 3;
static constexpr int M2 = 469762049, P2 = 3;
static constexpr int M3 = 1224736769, P3 = 3;
auto res1 = number_theoretic_transform<modint<M1>, P1, 1 << 20>().convolve(f, g);
auto res2 = number_theoretic_transform<modint<M2>, P2, 1 << 20>().convolve(f, g);
auto res3 = number_theoretic_transform<modint<M3>, P3, 1 << 20>().convolve(f, g);
const int n = res1.size();
std::vector<T> ret(n);
const int64_t M12 = (int64_t) modint<M2>::inv(M1);
const int64_t M13 = (int64_t) modint<M3>::inv(M1);
const int64_t M23 = (int64_t) modint<M3>::inv(M2);
for (int i = 0; i < n; ++i) {
const int64_t r[3] = {(int64_t) res1[i], (int64_t) res2[i], (int64_t) res3[i]};
const int64_t t0 = r[0] % M1;
const int64_t t1 = (r[1] - t0 + M2) * M12 % M2;
const int64_t t2 = ((r[2] - t0 + M3) * M13 % M3 - t1 + M3) * M23 % M3;
ret[i] = T(t0) + T(t1) * M1 + T(t2) * M1 * M2;
}
return ret;
}
} // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"
namespace haar_lib {
template <typename T>
std::vector<T> input_vector(int N) {
std::vector<T> ret(N);
for (int i = 0; i < N; ++i) std::cin >> ret[i];
return ret;
}
template <typename T>
std::vector<std::vector<T>> input_vector(int N, int M) {
std::vector<std::vector<T>> ret(N);
for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
return ret;
}
} // namespace haar_lib
#line 3 "Mylib/IO/join.cpp"
#include <sstream>
#include <string>
namespace haar_lib {
template <typename Iter>
std::string join(Iter first, Iter last, std::string delim = " ") {
std::stringstream s;
for (auto it = first; it != last; ++it) {
if (it != first) s << delim;
s << *it;
}
return s.str();
}
} // namespace haar_lib
#line 3 "Mylib/Math/multipoint_evaluation.cpp"
namespace haar_lib {
template <typename T, typename Poly>
auto multipoint_evaluation(Poly a, std::vector<T> p) {
const int M = p.size();
std::vector<T> ret(M);
int k = 1;
while (k < M) k *= 2;
std::vector<Poly> f(k * 2, {1});
for (int i = 0; i < M; ++i) f[i + k] = {-p[i], 1};
for (int i = k - 1; i >= 1; --i) f[i] = f[i << 1 | 0] * f[i << 1 | 1];
f[1] = a % f[1];
for (int i = 2; i < k + M; ++i) f[i] = f[i >> 1] % f[i];
for (int i = 0; i < M; ++i) ret[i] = f[k + i][0];
return ret;
}
} // namespace haar_lib
#line 3 "Mylib/Math/polynomial.cpp"
#include <initializer_list>
#line 5 "Mylib/Math/polynomial.cpp"
namespace haar_lib {
template <typename T, const auto &convolve>
class polynomial {
public:
using value_type = T;
private:
std::vector<T> data_;
public:
explicit polynomial(int N) : data_(N) {}
polynomial(std::vector<T> data) : data_(data) {}
polynomial(std::initializer_list<T> data) : data_(data.begin(), data.end()) {}
auto &data() { return data_; }
const auto &data() const { return data_; }
size_t size() const { return data_.size(); }
auto begin() { return data_.begin(); }
auto end() { return data_.end(); }
const auto &operator[](size_t i) const { return data_[i]; }
auto &operator[](size_t i) { return data_[i]; }
void resize(size_t n) { data_.resize(n); }
auto get(int n) const {
return polynomial(std::vector(data_.begin(), data_.begin() + std::min<int>(n, data_.size())));
}
int shrink() {
while (not data_.empty() and data_.back() == 0) {
data_.pop_back();
}
return data_.size();
}
auto &operator+=(const polynomial &that) {
if (data_.size() < that.data_.size()) data_.resize(that.data_.size());
for (size_t i = 0; i < that.data_.size(); ++i) data_[i] += that.data_[i];
return *this;
}
auto &operator-=(const polynomial &that) {
if (data_.size() < that.data_.size()) data_.resize(that.data_.size());
for (size_t i = 0; i < that.data_.size(); ++i) data_[i] -= that.data_[i];
return *this;
}
auto &operator*=(T k) {
for (auto &x : data_) x *= k;
return *this;
}
auto &operator/=(T k) {
for (auto &x : data_) x /= k;
return *this;
}
auto &operator*=(const polynomial &that) {
const int k = data_.size() + that.data_.size() - 1;
data_ = convolve(data_, that.data_);
data_.resize(k);
return *this;
}
auto operator+(const polynomial &that) const {
return polynomial(*this) += that;
}
auto operator-(const polynomial &that) const {
return polynomial(*this) -= that;
}
auto operator*(T k) const {
return polynomial(*this) *= k;
}
auto operator/(T k) const {
return polynomial(*this) /= k;
}
auto operator*(const polynomial &that) const {
return polynomial(*this) *= that;
}
auto differentiate() const {
polynomial ret((int) data_.size() - 1);
for (int i = 0; i < (int) ret.data_.size(); ++i) {
ret.data_[i] = data_[i + 1] * (i + 1);
}
return ret;
}
auto integrate() const {
polynomial ret((int) data_.size() + 1);
for (int i = 1; i < (int) ret.data_.size(); ++i) {
ret.data_[i] = data_[i - 1] / i;
}
return ret;
}
auto integrate(T lb, T ub) const {
T ret = 0, x1 = 1, x2 = 1;
for (int i = 0; i < (int) data_.size(); ++i) {
x1 *= lb;
x2 *= ub;
ret += data_[i] / (i + 1) * (x2 - x1);
}
return ret;
}
auto shift(int k) const {
polynomial ret((int) data_.size() + k);
for (int i = 0; i < (int) data_.size(); ++i) {
ret.data_[i + k] = data_[i];
}
return ret;
}
auto square() const {
const int k = data_.size() * 2 - 1;
auto ret = convolve(data_, data_, true);
ret.resize(k);
return polynomial(ret);
}
auto inv(int n) const {
polynomial ret({data_[0].inv()});
int t = 1;
while (t <= n * 2) {
ret = ret * T(2) - ret.square().get(t) * (*this).get(t);
if ((int) ret.data_.size() > t) ret.data_.resize(t);
t *= 2;
}
return ret;
}
std::pair<polynomial, polynomial> divmod(const polynomial &that) const {
if (data_.size() < that.size()) return {{0}, *this};
const int m = data_.size() - that.size();
auto g = *this;
std::reverse(g.begin(), g.end());
auto f = that;
const int d = (int) that.size() - 1;
std::reverse(f.begin(), f.end());
f = f.inv(m);
f.data_.resize(m + 1);
auto q = f * g;
q.data_.resize(m + 1);
std::reverse(q.begin(), q.end());
auto r = (*this) - that * q;
r.data_.resize(d);
r.shrink();
q.shrink();
return {q, r};
}
auto &operator/=(const polynomial &that) {
*this = divmod(that).first;
return *this;
}
auto &operator%=(const polynomial &that) {
*this = divmod(that).second;
return *this;
}
auto operator/(const polynomial &that) const {
return polynomial(*this) /= that;
}
auto operator%(const polynomial &that) const {
return polynomial(*this) %= that;
}
};
} // namespace haar_lib
#line 2 "Mylib/Number/Mod/mod_pow.cpp"
#include <cstdint>
namespace haar_lib {
constexpr int64_t mod_pow(int64_t n, int64_t p, int64_t m) {
int64_t ret = 1;
while (p > 0) {
if (p & 1) (ret *= n) %= m;
(n *= n) %= m;
p >>= 1;
}
return ret;
}
} // namespace haar_lib
#line 3 "Mylib/Number/Prime/primitive_root.cpp"
namespace haar_lib {
constexpr int primitive_root(int p) {
int pf[30] = {};
int k = 0;
{
int n = p - 1;
for (int64_t i = 2; i * i <= p; ++i) {
if (n % i == 0) {
pf[k++] = i;
while (n % i == 0) n /= i;
}
}
if (n != 1)
pf[k++] = n;
}
for (int g = 2; g <= p; ++g) {
bool ok = true;
for (int i = 0; i < k; ++i) {
if (mod_pow(g, (p - 1) / pf[i], p) == 1) {
ok = false;
break;
}
}
if (not ok) continue;
return g;
}
return -1;
}
} // namespace haar_lib
#line 11 "test/yosupo-judge/multipoint_evaluation/main.test.cpp"
namespace hl = haar_lib;
constexpr int mod = 998244353;
constexpr int prim_root = hl::primitive_root(mod);
using mint = hl::modint<mod>;
const static auto ntt = hl::number_theoretic_transform<mint, prim_root, 1 << 20>();
using poly = hl::polynomial<mint, ntt>;
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int N, M;
std::cin >> N >> M;
auto c = hl::input_vector<mint>(N);
auto p = hl::input_vector<mint>(M);
auto ans = hl::multipoint_evaluation(poly(c), p);
std::cout << hl::join(ans.begin(), ans.end()) << "\n";
return 0;
}