#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite" #include <iostream> #include "Mylib/AlgebraicStructure/Monoid/affine.cpp" #include "Mylib/AlgebraicStructure/Monoid/dual.cpp" #include "Mylib/DataStructure/Queue/sliding_window_aggregation.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/Number/Mint/mint.cpp" namespace hl = haar_lib; using mint = hl::modint<998244353>; using M = hl::dual_monoid<hl::affine_monoid<mint>>; int main() { int Q; std::cin >> Q; hl::sliding_window_aggregation<M> swag; for (auto [type] : hl::input_tuples<int>(Q)) { if (type == 0) { int a, b; std::cin >> a >> b; swag.push({a, b}); } else if (type == 1) { swag.pop(); } else { int x; std::cin >> x; auto res = swag.fold(); if (res) { auto [a, b] = *res; std::cout << a * x + b << std::endl; } else { std::cout << x << std::endl; } } } return 0; }
#line 1 "test/yosupo-judge/queue_operate_all_composite/main.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite" #include <iostream> #line 2 "Mylib/AlgebraicStructure/Monoid/affine.cpp" #include <utility> namespace haar_lib { template <typename T> struct affine_monoid { using value_type = std::pair<T, T>; value_type operator()() const { return std::make_pair(1, 0); } value_type operator()(const value_type &a, const value_type &b) const { return std::make_pair(a.first * b.first, a.first * b.second + a.second); } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/Monoid/dual.cpp" namespace haar_lib { template <typename Monoid> struct dual_monoid { using value_type = typename Monoid::value_type; const static Monoid M; value_type operator()() const { return M(); } value_type operator()(const value_type &a, const value_type &b) const { return M(b, a); } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/Queue/sliding_window_aggregation.cpp" #include <optional> #include <stack> #include <vector> namespace haar_lib { template <typename Semigroup> class sliding_window_aggregation { public: using value_type = typename Semigroup::value_type; private: Semigroup S_; std::stack<value_type> front_stack_, back_stack_; std::vector<value_type> front_sum_, back_sum_; std::optional<value_type> f(std::optional<value_type> a, std::optional<value_type> b) const { if (a) { if (b) return {S_(*a, *b)}; else return {*a}; } else { if (b) return {*b}; else return std::nullopt; } } std::optional<value_type> g(const std::vector<value_type> &a) const { return a.empty() ? std::nullopt : std::optional(a.back()); } public: sliding_window_aggregation() {} std::optional<value_type> fold() const { return f(g(front_sum_), g(back_sum_)); } void push(const value_type &value) { back_stack_.push(value); back_sum_.push_back(f(g(back_sum_), value).value()); } void pop() { if (front_stack_.empty()) { back_sum_.clear(); while (not back_stack_.empty()) { const auto value = back_stack_.top(); back_stack_.pop(); front_stack_.push(value); front_sum_.push_back(f(value, g(front_sum_)).value()); } } front_stack_.pop(); front_sum_.pop_back(); } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 4 "Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod() { return M; } constexpr modint() : val_(0) {} constexpr modint(int64_t n) { if (n >= M) val_ = n % M; else if (n < 0) val_ = n % M + M; else val_ = n; } constexpr auto &operator=(const modint &a) { val_ = a.val_; return *this; } constexpr auto &operator+=(const modint &a) { if (val_ + a.val_ >= M) val_ = (uint64_t) val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto &operator-=(const modint &a) { if (val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto &operator*=(const modint &a) { val_ = (uint64_t) val_ * a.val_ % M; return *this; } constexpr auto &operator/=(const modint &a) { val_ = (uint64_t) val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const { return modint(*this) += a; } constexpr auto operator-(const modint &a) const { return modint(*this) -= a; } constexpr auto operator*(const modint &a) const { return modint(*this) *= a; } constexpr auto operator/(const modint &a) const { return modint(*this) /= a; } constexpr bool operator==(const modint &a) const { return val_ == a.val_; } constexpr bool operator!=(const modint &a) const { return val_ != a.val_; } constexpr auto &operator++() { *this += 1; return *this; } constexpr auto &operator--() { *this -= 1; return *this; } constexpr auto operator++(int) { auto t = *this; *this += 1; return t; } constexpr auto operator--(int) { auto t = *this; *this -= 1; return t; } constexpr static modint pow(int64_t n, int64_t p) { if (p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for (; p; (e *= e) %= M, p >>= 1) if (p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a) { int64_t b = M, u = 1, v = 0; while (b) { int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if (u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); } constexpr auto pow(int64_t p) const { return pow(val_, p); } constexpr auto inv() const { return inv(val_); } friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); } friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; } friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; } friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; } friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; } friend std::istream &operator>>(std::istream &s, modint &a) { s >> a.val_; return s; } friend std::ostream &operator<<(std::ostream &s, const modint &a) { s << a.val_; return s; } template <int N> static auto div() { static auto value = inv(N); return value; } explicit operator int32_t() const noexcept { return val_; } explicit operator int64_t() const noexcept { return val_; } }; } // namespace haar_lib #line 9 "test/yosupo-judge/queue_operate_all_composite/main.test.cpp" namespace hl = haar_lib; using mint = hl::modint<998244353>; using M = hl::dual_monoid<hl::affine_monoid<mint>>; int main() { int Q; std::cin >> Q; hl::sliding_window_aggregation<M> swag; for (auto [type] : hl::input_tuples<int>(Q)) { if (type == 0) { int a, b; std::cin >> a >> b; swag.push({a, b}); } else if (type == 1) { swag.pop(); } else { int x; std::cin >> x; auto res = swag.fold(); if (res) { auto [a, b] = *res; std::cout << a * x + b << std::endl; } else { std::cout << x << std::endl; } } } return 0; }