kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/yosupo-judge/queue_operate_all_composite/main.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"

#include <iostream>
#include "Mylib/AlgebraicStructure/Monoid/affine.cpp"
#include "Mylib/AlgebraicStructure/Monoid/dual.cpp"
#include "Mylib/DataStructure/Queue/sliding_window_aggregation.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/Number/Mint/mint.cpp"

namespace hl = haar_lib;

using mint = hl::modint<998244353>;
using M    = hl::dual_monoid<hl::affine_monoid<mint>>;

int main() {
  int Q;
  std::cin >> Q;

  hl::sliding_window_aggregation<M> swag;

  for (auto [type] : hl::input_tuples<int>(Q)) {
    if (type == 0) {
      int a, b;
      std::cin >> a >> b;
      swag.push({a, b});
    } else if (type == 1) {
      swag.pop();
    } else {
      int x;
      std::cin >> x;
      auto res = swag.fold();
      if (res) {
        auto [a, b] = *res;
        std::cout << a * x + b << std::endl;
      } else {
        std::cout << x << std::endl;
      }
    }
  }

  return 0;
}
#line 1 "test/yosupo-judge/queue_operate_all_composite/main.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"

#include <iostream>
#line 2 "Mylib/AlgebraicStructure/Monoid/affine.cpp"
#include <utility>

namespace haar_lib {
  template <typename T>
  struct affine_monoid {
    using value_type = std::pair<T, T>;
    value_type operator()() const { return std::make_pair(1, 0); }
    value_type operator()(const value_type &a, const value_type &b) const {
      return std::make_pair(a.first * b.first, a.first * b.second + a.second);
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/Monoid/dual.cpp"

namespace haar_lib {
  template <typename Monoid>
  struct dual_monoid {
    using value_type = typename Monoid::value_type;
    const static Monoid M;
    value_type operator()() const { return M(); }
    value_type operator()(const value_type &a, const value_type &b) const { return M(b, a); }
  };
}  // namespace haar_lib
#line 2 "Mylib/DataStructure/Queue/sliding_window_aggregation.cpp"
#include <optional>
#include <stack>
#include <vector>

namespace haar_lib {
  template <typename Semigroup>
  class sliding_window_aggregation {
  public:
    using value_type = typename Semigroup::value_type;

  private:
    Semigroup S_;

    std::stack<value_type> front_stack_, back_stack_;
    std::vector<value_type> front_sum_, back_sum_;

    std::optional<value_type> f(std::optional<value_type> a, std::optional<value_type> b) const {
      if (a) {
        if (b)
          return {S_(*a, *b)};
        else
          return {*a};
      } else {
        if (b)
          return {*b};
        else
          return std::nullopt;
      }
    }

    std::optional<value_type> g(const std::vector<value_type> &a) const {
      return a.empty() ? std::nullopt : std::optional(a.back());
    }

  public:
    sliding_window_aggregation() {}

    std::optional<value_type> fold() const {
      return f(g(front_sum_), g(back_sum_));
    }

    void push(const value_type &value) {
      back_stack_.push(value);
      back_sum_.push_back(f(g(back_sum_), value).value());
    }

    void pop() {
      if (front_stack_.empty()) {
        back_sum_.clear();

        while (not back_stack_.empty()) {
          const auto value = back_stack_.top();
          back_stack_.pop();
          front_stack_.push(value);
          front_sum_.push_back(f(value, g(front_sum_)).value());
        }
      }

      front_stack_.pop();
      front_sum_.pop_back();
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#line 6 "Mylib/IO/input_tuple.cpp"

namespace haar_lib {
  template <typename T, size_t... I>
  static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
    (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
  }

  template <typename T, typename U>
  std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
    s >> value.first >> value.second;
    return s;
  }

  template <typename... Args>
  std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
    input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
    return s;
  }
}  // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"

namespace haar_lib {
  template <typename... Args>
  class InputTuples {
    struct iter {
      using value_type = std::tuple<Args...>;
      value_type value;
      bool fetched = false;
      int N, c = 0;

      value_type operator*() {
        if (not fetched) {
          std::cin >> value;
        }
        return value;
      }

      void operator++() {
        ++c;
        fetched = false;
      }

      bool operator!=(iter &) const {
        return c < N;
      }

      iter(int N) : N(N) {}
    };

    int N;

  public:
    InputTuples(int N) : N(N) {}

    iter begin() const { return iter(N); }
    iter end() const { return iter(N); }
  };

  template <typename... Args>
  auto input_tuples(int N) {
    return InputTuples<Args...>(N);
  }
}  // namespace haar_lib
#line 4 "Mylib/Number/Mint/mint.cpp"

namespace haar_lib {
  template <int32_t M>
  class modint {
    uint32_t val_;

  public:
    constexpr static auto mod() { return M; }

    constexpr modint() : val_(0) {}
    constexpr modint(int64_t n) {
      if (n >= M)
        val_ = n % M;
      else if (n < 0)
        val_ = n % M + M;
      else
        val_ = n;
    }

    constexpr auto &operator=(const modint &a) {
      val_ = a.val_;
      return *this;
    }
    constexpr auto &operator+=(const modint &a) {
      if (val_ + a.val_ >= M)
        val_ = (uint64_t) val_ + a.val_ - M;
      else
        val_ += a.val_;
      return *this;
    }
    constexpr auto &operator-=(const modint &a) {
      if (val_ < a.val_) val_ += M;
      val_ -= a.val_;
      return *this;
    }
    constexpr auto &operator*=(const modint &a) {
      val_ = (uint64_t) val_ * a.val_ % M;
      return *this;
    }
    constexpr auto &operator/=(const modint &a) {
      val_ = (uint64_t) val_ * a.inv().val_ % M;
      return *this;
    }

    constexpr auto operator+(const modint &a) const { return modint(*this) += a; }
    constexpr auto operator-(const modint &a) const { return modint(*this) -= a; }
    constexpr auto operator*(const modint &a) const { return modint(*this) *= a; }
    constexpr auto operator/(const modint &a) const { return modint(*this) /= a; }

    constexpr bool operator==(const modint &a) const { return val_ == a.val_; }
    constexpr bool operator!=(const modint &a) const { return val_ != a.val_; }

    constexpr auto &operator++() {
      *this += 1;
      return *this;
    }
    constexpr auto &operator--() {
      *this -= 1;
      return *this;
    }

    constexpr auto operator++(int) {
      auto t = *this;
      *this += 1;
      return t;
    }
    constexpr auto operator--(int) {
      auto t = *this;
      *this -= 1;
      return t;
    }

    constexpr static modint pow(int64_t n, int64_t p) {
      if (p < 0) return pow(n, -p).inv();

      int64_t ret = 1, e = n % M;
      for (; p; (e *= e) %= M, p >>= 1)
        if (p & 1) (ret *= e) %= M;
      return ret;
    }

    constexpr static modint inv(int64_t a) {
      int64_t b = M, u = 1, v = 0;

      while (b) {
        int64_t t = a / b;
        a -= t * b;
        std::swap(a, b);
        u -= t * v;
        std::swap(u, v);
      }

      u %= M;
      if (u < 0) u += M;

      return u;
    }

    constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); }

    constexpr auto pow(int64_t p) const { return pow(val_, p); }
    constexpr auto inv() const { return inv(val_); }

    friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); }

    friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; }
    friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; }
    friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; }
    friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; }

    friend std::istream &operator>>(std::istream &s, modint &a) {
      s >> a.val_;
      return s;
    }
    friend std::ostream &operator<<(std::ostream &s, const modint &a) {
      s << a.val_;
      return s;
    }

    template <int N>
    static auto div() {
      static auto value = inv(N);
      return value;
    }

    explicit operator int32_t() const noexcept { return val_; }
    explicit operator int64_t() const noexcept { return val_; }
  };
}  // namespace haar_lib
#line 9 "test/yosupo-judge/queue_operate_all_composite/main.test.cpp"

namespace hl = haar_lib;

using mint = hl::modint<998244353>;
using M    = hl::dual_monoid<hl::affine_monoid<mint>>;

int main() {
  int Q;
  std::cin >> Q;

  hl::sliding_window_aggregation<M> swag;

  for (auto [type] : hl::input_tuples<int>(Q)) {
    if (type == 0) {
      int a, b;
      std::cin >> a >> b;
      swag.push({a, b});
    } else if (type == 1) {
      swag.pop();
    } else {
      int x;
      std::cin >> x;
      auto res = swag.fold();
      if (res) {
        auto [a, b] = *res;
        std::cout << a * x + b << std::endl;
      } else {
        std::cout << x << std::endl;
      }
    }
  }

  return 0;
}
Back to top page