#define PROBLEM "https://judge.yosupo.jp/problem/rectangle_sum" #include <iostream> #include <vector> #include "Mylib/AlgebraicStructure/Monoid/sum.cpp" #include "Mylib/DataStructure/SegmentTree/persistent_segment_tree.cpp" #include "Mylib/IO/input_tuple_vector.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/Utils/compressor.cpp" #include "Mylib/Utils/sort_simultaneously.cpp" namespace hl = haar_lib; using Seg = hl::persistent_segment_tree<hl::sum_monoid<int64_t>>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N, Q; std::cin >> N >> Q; auto [x, y, w] = hl::input_tuple_vector<int64_t, int64_t, int64_t>(N); hl::sort_simultaneously( [&](int i, int j) { return y[i] < y[j]; }, x, y, w); auto c = hl::compressor_builder<int64_t>().add(x).build().compress(x); const int m = c.size(); std::vector<Seg> seg; seg.push_back(Seg(m)); for (int i = 0; i < N; ++i) { auto &s = seg.back(); seg.push_back(s.update(x[i], w[i])); } for (auto [l, d, r, u] : hl::input_tuples<int64_t, int64_t, int64_t, int64_t>(Q)) { l = c.get_index(l); r = c.get_index(r); u = std::lower_bound(y.begin(), y.end(), u) - y.begin(); d = std::lower_bound(y.begin(), y.end(), d) - y.begin(); auto ans = seg[u].fold(l, r) - seg[d].fold(l, r); std::cout << ans << "\n"; } return 0; }
#line 1 "test/yosupo-judge/rectangle_sum/main.persistent_segment_tree.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/rectangle_sum" #include <iostream> #include <vector> #line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp" namespace haar_lib { template <typename T> struct sum_monoid { using value_type = T; value_type operator()() const { return 0; } value_type operator()(value_type a, value_type b) const { return a + b; } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/SegmentTree/persistent_segment_tree.cpp" #include <cassert> #line 4 "Mylib/DataStructure/SegmentTree/persistent_segment_tree.cpp" namespace haar_lib { template <typename Monoid> class persistent_segment_tree { public: using value_type = typename Monoid::value_type; private: struct node { value_type value; node *left = nullptr, *right = nullptr; node(const value_type &value) : value(value) {} }; Monoid M_; int depth_, size_; node *root_ = nullptr; persistent_segment_tree(int depth, node *root) : depth_(depth), root_(root) {} node *assign(node *t, const std::vector<value_type> &init_list, int d, int &pos) { if (d == depth_) { t = new node(pos < (int) init_list.size() ? init_list[pos] : M_()); ++pos; } else { t = new node(M_()); t->left = assign(t->left, init_list, d + 1, pos); t->right = assign(t->right, init_list, d + 1, pos); t->value = M_(t->left->value, t->right->value); } return t; } void init(const std::vector<value_type> &init_list) { size_ = init_list.size(); depth_ = size_ == 1 ? 1 : 32 - __builtin_clz(size_ - 1) + 1; int pos = 0; root_ = assign(root_, init_list, 1, pos); } public: persistent_segment_tree() {} persistent_segment_tree(const std::vector<value_type> &init_list) { init(init_list); } persistent_segment_tree(int size) { init(std::vector(size, M_())); } persistent_segment_tree(int size, const value_type &value) { init(std::vector(size, value)); } protected: node *set(node *t, int l, int r, int pos, const value_type &val) const { if (r <= pos or pos + 1 <= l) { return t; } else if (pos <= l and r <= pos + 1) { return new node(val); } else { const int m = (l + r) >> 1; auto lp = set(t->left, l, m, pos, val); auto rp = set(t->right, m, r, pos, val); node *s = new node(M_(lp->value, rp->value)); s->left = lp; s->right = rp; return s; } } public: persistent_segment_tree set(int i, const value_type &val) const { assert(0 <= i and i < size_); node *t = set(root_, 0, 1 << (depth_ - 1), i, val); return persistent_segment_tree(depth_, t); } persistent_segment_tree update(int i, const value_type &val) const { return set(i, M_((*this)[i], val)); } protected: value_type get(node *t, int i, int j, int l, int r) const { if (i <= l and r <= j) return t->value; if (r <= i or j <= l) return M_(); const int m = (l + r) >> 1; return M_(get(t->left, i, j, l, m), get(t->right, i, j, m, r)); } public: value_type fold(int l, int r) const { assert(0 <= l and l <= r and r <= size_); return get(root_, l, r, 0, 1 << (depth_ - 1)); } value_type operator[](int i) const { return fold(i, i + 1); } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuple_vector.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuple_vector.cpp" #include <tuple> #include <utility> #line 7 "Mylib/IO/input_tuple_vector.cpp" namespace haar_lib { template <typename T, size_t... I> void input_tuple_vector_init(T &val, int N, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(std::get<I>(val).resize(N)), 0)...}; } template <typename T, size_t... I> void input_tuple_vector_helper(T &val, int i, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(std::cin >> std::get<I>(val)[i]), 0)...}; } template <typename... Args> auto input_tuple_vector(int N) { std::tuple<std::vector<Args>...> ret; input_tuple_vector_init(ret, N, std::make_index_sequence<sizeof...(Args)>()); for (int i = 0; i < N; ++i) { input_tuple_vector_helper(ret, i, std::make_index_sequence<sizeof...(Args)>()); } return ret; } } // namespace haar_lib #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 2 "Mylib/Utils/compressor.cpp" #include <algorithm> #line 4 "Mylib/Utils/compressor.cpp" namespace haar_lib { template <typename T> class compressor { std::vector<T> data_; template <typename> friend class compressor_builder; public: int get_index(const T &val) const { return std::lower_bound(data_.begin(), data_.end(), val) - data_.begin(); } auto &compress(std::vector<T> &vals) const { for (auto &x : vals) x = get_index(x); return *this; } auto &compress(T &val) const { val = get_index(val); return *this; } template <typename U, typename... Args> auto &compress(U &val, Args &... args) const { compress(val); return compress(args...); } auto &decompress(std::vector<T> &vals) const { for (auto &x : vals) x = data_[x]; return *this; } auto &decompress(T &val) const { val = data_[val]; return *this; } template <typename U, typename... Args> auto &decompress(U &val, Args &... args) const { decompress(val); return decompress(args...); } int size() const { return data_.size(); } T operator[](int index) const { return data_[index]; } }; template <typename T> class compressor_builder { std::vector<T> data_; public: auto &add(const T &val) { data_.push_back(val); return *this; } auto &add(const std::vector<T> &vals) { data_.insert(data_.end(), vals.begin(), vals.end()); return *this; } template <typename U, typename... Args> auto &add(const U &val, const Args &... args) { add(val); return add(args...); } auto build() const { compressor<T> ret; ret.data_ = data_; std::sort(ret.data_.begin(), ret.data_.end()); ret.data_.erase(std::unique(ret.data_.begin(), ret.data_.end()), ret.data_.end()); return ret; } }; } // namespace haar_lib #line 5 "Mylib/Utils/sort_simultaneously.cpp" #include <numeric> #line 8 "Mylib/Utils/sort_simultaneously.cpp" namespace haar_lib { namespace sort_simultaneously_impl { template <typename T> void helper(int N, const std::vector<int> &ord, std::vector<T> &a) { std::vector<T> temp(N); for (int i = 0; i < N; ++i) temp[i] = a[ord[i]]; std::swap(temp, a); } } // namespace sort_simultaneously_impl template <typename Compare, typename... Args> void sort_simultaneously(const Compare &compare, std::vector<Args> &... args) { const int N = std::max({args.size()...}); assert((int) std::min({args.size()...}) == N); std::vector<int> ord(N); std::iota(ord.begin(), ord.end(), 0); std::sort(ord.begin(), ord.end(), compare); (void) std::initializer_list<int>{ (void(sort_simultaneously_impl::helper(N, ord, args)), 0)...}; } } // namespace haar_lib #line 11 "test/yosupo-judge/rectangle_sum/main.persistent_segment_tree.test.cpp" namespace hl = haar_lib; using Seg = hl::persistent_segment_tree<hl::sum_monoid<int64_t>>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N, Q; std::cin >> N >> Q; auto [x, y, w] = hl::input_tuple_vector<int64_t, int64_t, int64_t>(N); hl::sort_simultaneously( [&](int i, int j) { return y[i] < y[j]; }, x, y, w); auto c = hl::compressor_builder<int64_t>().add(x).build().compress(x); const int m = c.size(); std::vector<Seg> seg; seg.push_back(Seg(m)); for (int i = 0; i < N; ++i) { auto &s = seg.back(); seg.push_back(s.update(x[i], w[i])); } for (auto [l, d, r, u] : hl::input_tuples<int64_t, int64_t, int64_t, int64_t>(Q)) { l = c.get_index(l); r = c.get_index(r); u = std::lower_bound(y.begin(), y.end(), u) - y.begin(); d = std::lower_bound(y.begin(), y.end(), d) - y.begin(); auto ans = seg[u].fold(l, r) - seg[d].fold(l, r); std::cout << ans << "\n"; } return 0; }