#define PROBLEM "https://judge.yosupo.jp/problem/sqrt_of_formal_power_series" #include <functional> #include <iostream> #include <vector> #include "Mylib/Convolution/ntt_convolution.cpp" #include "Mylib/IO/input_vector.cpp" #include "Mylib/IO/join.cpp" #include "Mylib/Math/formal_power_series.cpp" #include "Mylib/Math/fps_sqrt.cpp" #include "Mylib/Number/Mint/mint.cpp" #include "Mylib/Number/Mod/mod_sqrt.cpp" #include "Mylib/Number/Prime/primitive_root.cpp" namespace hl = haar_lib; constexpr int mod = 998244353; constexpr int prim_root = hl::primitive_root(mod); using mint = hl::modint<mod>; using NTT = hl::number_theoretic_transform<mint, prim_root, 1 << 21>; const static auto ntt = NTT(); using FPS = hl::formal_power_series<mint, ntt>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N; std::cin >> N; auto a = hl::input_vector<mint>(N); auto ans = FPS(a).sqrt(); if (ans) { std::cout << hl::join((*ans).begin(), (*ans).begin() + N) << "\n"; } else { std::cout << -1 << "\n"; } return 0; }
#line 1 "test/yosupo-judge/sqrt_of_formal_power_series/main.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/sqrt_of_formal_power_series" #include <functional> #include <iostream> #include <vector> #line 2 "Mylib/Convolution/ntt_convolution.cpp" #include <algorithm> #include <cassert> #include <utility> #line 4 "Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod() { return M; } constexpr modint() : val_(0) {} constexpr modint(int64_t n) { if (n >= M) val_ = n % M; else if (n < 0) val_ = n % M + M; else val_ = n; } constexpr auto &operator=(const modint &a) { val_ = a.val_; return *this; } constexpr auto &operator+=(const modint &a) { if (val_ + a.val_ >= M) val_ = (uint64_t) val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto &operator-=(const modint &a) { if (val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto &operator*=(const modint &a) { val_ = (uint64_t) val_ * a.val_ % M; return *this; } constexpr auto &operator/=(const modint &a) { val_ = (uint64_t) val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const { return modint(*this) += a; } constexpr auto operator-(const modint &a) const { return modint(*this) -= a; } constexpr auto operator*(const modint &a) const { return modint(*this) *= a; } constexpr auto operator/(const modint &a) const { return modint(*this) /= a; } constexpr bool operator==(const modint &a) const { return val_ == a.val_; } constexpr bool operator!=(const modint &a) const { return val_ != a.val_; } constexpr auto &operator++() { *this += 1; return *this; } constexpr auto &operator--() { *this -= 1; return *this; } constexpr auto operator++(int) { auto t = *this; *this += 1; return t; } constexpr auto operator--(int) { auto t = *this; *this -= 1; return t; } constexpr static modint pow(int64_t n, int64_t p) { if (p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for (; p; (e *= e) %= M, p >>= 1) if (p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a) { int64_t b = M, u = 1, v = 0; while (b) { int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if (u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); } constexpr auto pow(int64_t p) const { return pow(val_, p); } constexpr auto inv() const { return inv(val_); } friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); } friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; } friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; } friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; } friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; } friend std::istream &operator>>(std::istream &s, modint &a) { s >> a.val_; return s; } friend std::ostream &operator<<(std::ostream &s, const modint &a) { s << a.val_; return s; } template <int N> static auto div() { static auto value = inv(N); return value; } explicit operator int32_t() const noexcept { return val_; } explicit operator int64_t() const noexcept { return val_; } }; } // namespace haar_lib #line 7 "Mylib/Convolution/ntt_convolution.cpp" namespace haar_lib { template <typename T, int PRIM_ROOT, int MAX_SIZE> class number_theoretic_transform { public: using value_type = T; constexpr static int primitive_root = PRIM_ROOT; constexpr static int max_size = MAX_SIZE; private: const int MAX_POWER_; std::vector<T> BASE_, INV_BASE_; public: number_theoretic_transform() : MAX_POWER_(__builtin_ctz(MAX_SIZE)), BASE_(MAX_POWER_ + 1), INV_BASE_(MAX_POWER_ + 1) { static_assert((MAX_SIZE & (MAX_SIZE - 1)) == 0, "MAX_SIZE must be power of 2."); static_assert((T::mod() - 1) % MAX_SIZE == 0); T t = T::pow(PRIM_ROOT, (T::mod() - 1) >> (MAX_POWER_ + 2)); T s = t.inv(); for (int i = MAX_POWER_; --i >= 0;) { t *= t; s *= s; BASE_[i] = -t; INV_BASE_[i] = -s; } } void run(std::vector<T> &f, bool INVERSE = false) const { const int n = f.size(); assert((n & (n - 1)) == 0 and n <= MAX_SIZE); // データ数は2の冪乗個 if (INVERSE) { for (int b = 1; b < n; b <<= 1) { T w = 1; for (int j = 0, k = 1; j < n; j += 2 * b, ++k) { for (int i = 0; i < b; ++i) { const auto s = f[i + j]; const auto t = f[i + j + b]; f[i + j] = s + t; f[i + j + b] = (s - t) * w; } w *= INV_BASE_[__builtin_ctz(k)]; } } const T t = T::inv(n); for (auto &x : f) x *= t; } else { for (int b = n >> 1; b; b >>= 1) { T w = 1; for (int j = 0, k = 1; j < n; j += 2 * b, ++k) { for (int i = 0; i < b; ++i) { const auto s = f[i + j]; const auto t = f[i + j + b] * w; f[i + j] = s + t; f[i + j + b] = s - t; } w *= BASE_[__builtin_ctz(k)]; } } } } template <typename U> std::vector<T> convolve(std::vector<U> f, std::vector<U> g, bool is_same = false) const { const int m = f.size() + g.size() - 1; int n = 1; while (n < m) n *= 2; std::vector<T> f2(n); for (int i = 0; i < (int) f.size(); ++i) f2[i] = (int64_t) f[i]; run(f2); if (is_same) { for (int i = 0; i < n; ++i) f2[i] *= f2[i]; run(f2, true); } else { std::vector<T> g2(n); for (int i = 0; i < (int) g.size(); ++i) g2[i] = (int64_t) g[i]; run(g2); for (int i = 0; i < n; ++i) f2[i] *= g2[i]; run(f2, true); } return f2; } template <typename U> std::vector<T> operator()(std::vector<U> f, std::vector<U> g, bool is_same = false) const { return convolve(f, g, is_same); } }; template <typename T> std::vector<T> convolve_general_mod(std::vector<T> f, std::vector<T> g) { static constexpr int M1 = 167772161, P1 = 3; static constexpr int M2 = 469762049, P2 = 3; static constexpr int M3 = 1224736769, P3 = 3; auto res1 = number_theoretic_transform<modint<M1>, P1, 1 << 20>().convolve(f, g); auto res2 = number_theoretic_transform<modint<M2>, P2, 1 << 20>().convolve(f, g); auto res3 = number_theoretic_transform<modint<M3>, P3, 1 << 20>().convolve(f, g); const int n = res1.size(); std::vector<T> ret(n); const int64_t M12 = (int64_t) modint<M2>::inv(M1); const int64_t M13 = (int64_t) modint<M3>::inv(M1); const int64_t M23 = (int64_t) modint<M3>::inv(M2); for (int i = 0; i < n; ++i) { const int64_t r[3] = {(int64_t) res1[i], (int64_t) res2[i], (int64_t) res3[i]}; const int64_t t0 = r[0] % M1; const int64_t t1 = (r[1] - t0 + M2) * M12 % M2; const int64_t t2 = ((r[2] - t0 + M3) * M13 % M3 - t1 + M3) * M23 % M3; ret[i] = T(t0) + T(t1) * M1 + T(t2) * M1 * M2; } return ret; } } // namespace haar_lib #line 4 "Mylib/IO/input_vector.cpp" namespace haar_lib { template <typename T> std::vector<T> input_vector(int N) { std::vector<T> ret(N); for (int i = 0; i < N; ++i) std::cin >> ret[i]; return ret; } template <typename T> std::vector<std::vector<T>> input_vector(int N, int M) { std::vector<std::vector<T>> ret(N); for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M); return ret; } } // namespace haar_lib #line 3 "Mylib/IO/join.cpp" #include <sstream> #include <string> namespace haar_lib { template <typename Iter> std::string join(Iter first, Iter last, std::string delim = " ") { std::stringstream s; for (auto it = first; it != last; ++it) { if (it != first) s << delim; s << *it; } return s.str(); } } // namespace haar_lib #line 4 "Mylib/Math/formal_power_series.cpp" #include <initializer_list> #line 6 "Mylib/Math/formal_power_series.cpp" namespace haar_lib { template <typename T, const auto &convolve> class formal_power_series { public: using value_type = T; private: std::vector<T> data_; public: formal_power_series() {} explicit formal_power_series(int N) : data_(N) {} formal_power_series(const std::vector<T> &data_) : data_(data_) {} formal_power_series(std::initializer_list<T> init) : data_(init.begin(), init.end()) {} formal_power_series(const formal_power_series &a) : data_(a.data_) {} formal_power_series(formal_power_series &&a) noexcept { *this = std::move(a); } size_t size() const { return data_.size(); } const T &operator[](int i) const { return data_[i]; } T &operator[](int i) { return data_[i]; } auto begin() { return data_.begin(); } auto end() { return data_.end(); } const auto &data() const { return data_; } void resize(int n) { data_.resize(n); } auto &operator=(formal_power_series &&rhs) noexcept { if (this != &rhs) { data_ = std::move(rhs.data_); } return *this; } auto &operator+=(const formal_power_series &rhs) { if (data_.size() < rhs.size()) data_.resize(rhs.size()); for (int i = 0; i < rhs.size(); ++i) data_[i] += rhs[i]; return *this; } auto &operator+=(T rhs) { data_[0] += rhs; return *this; } auto operator+(T rhs) const { auto ret = *this; return ret += rhs; } auto operator+(const formal_power_series &rhs) const { auto ret = *this; return ret += rhs; } auto &operator-=(const formal_power_series &rhs) { if (data_.size() < rhs.size()) data_.resize(rhs.size()); for (int i = 0; i < rhs.size(); ++i) data_[i] -= rhs[i]; return *this; } auto &operator-=(T rhs) { data_[0] -= rhs; return *this; } auto operator-(T rhs) const { auto ret = *this; return ret -= rhs; } auto operator-(const formal_power_series &rhs) const { auto ret = *this; return ret -= rhs; } auto operator-() const { auto ret = *this; for (auto &x : ret) x = -x; return ret; } auto &operator*=(const formal_power_series &rhs) { data_ = convolve(data_, rhs.data_); return *this; } auto operator*(const formal_power_series &rhs) const { auto ret = convolve(data_, rhs.data_); return formal_power_series(ret); } auto &operator*=(T rhs) { for (auto &x : data_) x *= rhs; return *this; } auto operator*(T rhs) const { auto ret = *this; return ret *= rhs; } auto differentiate() const { const int n = data_.size(); std::vector<T> ret(n - 1); for (int i = 0; i < n - 1; ++i) { ret[i] = data_[i + 1] * (i + 1); } return formal_power_series(ret); } auto integrate() const { const int n = data_.size(); std::vector<T> ret(n + 1), invs(n + 1, 1); const int p = T::mod(); for (int i = 2; i <= n; ++i) invs[i] = -invs[p % i] * (p / i); for (int i = 0; i < n; ++i) { ret[i + 1] = data_[i] * invs[i + 1]; } return formal_power_series(ret); } auto inv() const { assert(data_[0] != 0); const int n = data_.size(); int t = 1; std::vector<T> ret = {data_[0].inv()}; ret.reserve(n * 2); while (t <= n * 2) { std::vector<T> c(data_.begin(), data_.begin() + std::min(t, n)); auto a = convolve(ret, ret, true); if ((int) a.size() > t) a.resize(t); c = convolve(c, a); if ((int) c.size() > t) c.resize(t); if ((int) ret.size() > t) ret.resize(t); for (int i = 0; i < (int) ret.size(); ++i) ret[i] = ret[i] * 2; if (ret.size() < c.size()) ret.resize(std::min<int>(c.size(), t)); for (int i = 0; i < (int) c.size(); ++i) { ret[i] -= c[i]; } t <<= 1; } ret.resize(n); return formal_power_series(ret); } auto log() const { assert(data_[0] == 1); const int n = data_.size(); auto ret = (differentiate() * inv()).integrate(); ret.resize(n); return ret; } auto exp() const { const int n = data_.size(); int t = 1; formal_power_series b({1}); while (t <= n * 2) { t <<= 1; auto temp = b.log(); temp.resize(t); for (int i = 0; i < t; ++i) temp[i] = -temp[i]; temp[0] += 1; for (int i = 0; i < std::min(t, n); ++i) temp[i] += data_[i]; b = b * temp; b.resize(t); } b.resize(n); return b; } auto shift(int64_t k) const { const int64_t n = data_.size(); formal_power_series ret(n); if (k >= 0) { for (int64_t i = k; i < n; ++i) { ret[i] = data_[i - k]; } } else { for (int64_t i = 0; i < n + k; ++i) { ret[i] = data_[i - k]; } } return ret; } auto pow(int64_t M) const { assert(M >= 0); const int n = data_.size(); int k = 0; for (; k < n; ++k) { if (data_[k] != 0) { break; } } if (k >= n) return *this; T a = data_[k]; formal_power_series ret = *this; ret = (ret.shift(-k)) * a.inv(); ret = (ret.log() * (T) M).exp(); ret = (ret * a.pow(M)).shift(M * k); return ret; } std::optional<formal_power_series> sqrt() const; }; } // namespace haar_lib #line 2 "Mylib/Number/Mod/mod_sqrt.cpp" #include <optional> #include <random> #line 2 "Mylib/Number/Mod/mod_pow.cpp" #include <cstdint> namespace haar_lib { constexpr int64_t mod_pow(int64_t n, int64_t p, int64_t m) { int64_t ret = 1; while (p > 0) { if (p & 1) (ret *= n) %= m; (n *= n) %= m; p >>= 1; } return ret; } } // namespace haar_lib #line 5 "Mylib/Number/Mod/mod_sqrt.cpp" namespace haar_lib { std::optional<int64_t> mod_sqrt(int64_t a, int64_t p) { if (p == 2) return a % 2; if (a == 0) return 0; int64_t b = mod_pow(a, (p - 1) / 2, p); if (b == p - 1) return {}; if (p % 4 == 3) return mod_pow(a, (p + 1) / 4, p); int64_t q = p - 1, s = 0; while (q % 2 == 0) { q /= 2; s += 1; } static std::mt19937_64 rand(time(0)); std::uniform_int_distribution<> dist(0, p - 1); int64_t z; while (1) { z = dist(rand); if (mod_pow(z, (p - 1) / 2, p) == p - 1) break; } int64_t m = s; int64_t c = mod_pow(z, q, p); int64_t t = mod_pow(a, q, p); int64_t r = mod_pow(a, (q + 1) / 2, p); while (1) { if (t == 0) return 0; if (t == 1) return r; int i = 1; for (int64_t T = t; i < m; ++i) { (T *= T) %= p; if (T == 1) break; } int64_t b = mod_pow(c, 1LL << (m - i - 1), p); m = i; c = b * b % p; (t *= b * b % p) %= p; (r *= b) %= p; } } } // namespace haar_lib #line 4 "Mylib/Math/fps_sqrt.cpp" namespace haar_lib { template <typename T, const auto &convolve> auto formal_power_series<T, convolve>::sqrt() const -> std::optional<formal_power_series<T, convolve>> { constexpr int mod = value_type::mod(); const int n = data_.size(); int k = 0; for (; k < n; ++k) if (data_[k] != 0) break; if (k >= n) return *this; if (k % 2 != 0) return {}; auto x = mod_sqrt((int64_t) data_[k], mod); if (not x) return {}; const int m = n - k; auto it = data_.begin() + k; formal_power_series ret({*x}); int t = 1; while (t <= m * 2) { formal_power_series f(std::vector<T>(it, it + std::min(t, m))); ret.resize(t); f.resize(t); ret = (ret + f * ret.inv()) * T(2).inv(); t <<= 1; } ret.resize(n); ret = ret.shift(k / 2); return ret; } } // namespace haar_lib #line 3 "Mylib/Number/Prime/primitive_root.cpp" namespace haar_lib { constexpr int primitive_root(int p) { int pf[30] = {}; int k = 0; { int n = p - 1; for (int64_t i = 2; i * i <= p; ++i) { if (n % i == 0) { pf[k++] = i; while (n % i == 0) n /= i; } } if (n != 1) pf[k++] = n; } for (int g = 2; g <= p; ++g) { bool ok = true; for (int i = 0; i < k; ++i) { if (mod_pow(g, (p - 1) / pf[i], p) == 1) { ok = false; break; } } if (not ok) continue; return g; } return -1; } } // namespace haar_lib #line 14 "test/yosupo-judge/sqrt_of_formal_power_series/main.test.cpp" namespace hl = haar_lib; constexpr int mod = 998244353; constexpr int prim_root = hl::primitive_root(mod); using mint = hl::modint<mod>; using NTT = hl::number_theoretic_transform<mint, prim_root, 1 << 21>; const static auto ntt = NTT(); using FPS = hl::formal_power_series<mint, ntt>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N; std::cin >> N; auto a = hl::input_vector<mint>(N); auto ans = FPS(a).sqrt(); if (ans) { std::cout << hl::join((*ans).begin(), (*ans).begin() + N) << "\n"; } else { std::cout << -1 << "\n"; } return 0; }