#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite" #include <iostream> #include <utility> #include <vector> #include "Mylib/AlgebraicStructure/Monoid/affine.cpp" #include "Mylib/AlgebraicStructure/Monoid/dual.cpp" #include "Mylib/DataStructure/SegmentTree/segment_tree_both_foldable.cpp" #include "Mylib/Graph/Template/graph.cpp" #include "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/IO/input_vector.cpp" #include "Mylib/Number/Mint/mint.cpp" namespace hl = haar_lib; using mint = hl::modint<998244353>; using Monoid = hl::dual_monoid<hl::affine_monoid<mint>>; const Monoid M; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N, Q; std::cin >> N >> Q; auto f = hl::input_vector<std::pair<mint, mint>>(N); hl::tree<int> tree(N); tree.read<0, false, false>(N - 1); hl::hl_decomposition<int> hld(tree, 0); hl::segment_tree_both_foldable<Monoid> seg(N); for (int i = 0; i < N; ++i) { seg.set(hld.get_id(i), f[i]); } for (auto [type] : hl::input_tuples<int>(Q)) { if (type == 0) { int64_t p, c, d; std::cin >> p >> c >> d; seg.set(hld.get_id(p), std::make_pair(c, d)); } else { int64_t u, v, x; std::cin >> u >> v >> x; auto res = M(); for (auto [l, r, d] : hld.path_query_vertex(u, v)) { if (d) res = M(res, seg.fold_left(l, r)); else res = M(res, seg.fold_right(l, r)); } mint ans = res.first * x + res.second; std::cout << ans << "\n"; } } return 0; }
#line 1 "test/yosupo-judge/vertex_set_path_composite/main.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite" #include <iostream> #include <utility> #include <vector> #line 3 "Mylib/AlgebraicStructure/Monoid/affine.cpp" namespace haar_lib { template <typename T> struct affine_monoid { using value_type = std::pair<T, T>; value_type operator()() const { return std::make_pair(1, 0); } value_type operator()(const value_type &a, const value_type &b) const { return std::make_pair(a.first * b.first, a.first * b.second + a.second); } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/Monoid/dual.cpp" namespace haar_lib { template <typename Monoid> struct dual_monoid { using value_type = typename Monoid::value_type; const static Monoid M; value_type operator()() const { return M(); } value_type operator()(const value_type &a, const value_type &b) const { return M(b, a); } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/SegmentTree/segment_tree_both_foldable.cpp" #include <cassert> #line 4 "Mylib/DataStructure/SegmentTree/segment_tree_both_foldable.cpp" namespace haar_lib { template <typename Monoid> class segment_tree_both_foldable { public: using value_type = typename Monoid::value_type; private: Monoid M_; int depth_, size_, hsize_; std::vector<value_type> data_left_, data_right_; public: segment_tree_both_foldable() {} segment_tree_both_foldable(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_left_(size_, M_()), data_right_(size_, M_()) {} auto operator[](int i) const { assert(0 <= i and i < hsize_); return data_left_[hsize_ + i]; } auto fold_left(int l, int r) const { assert(0 <= l and l <= r and r <= hsize_); value_type ret_left = M_(); value_type ret_right = M_(); l += hsize_, r += hsize_; while (l < r) { if (r & 1) ret_right = M_(data_left_[--r], ret_right); if (l & 1) ret_left = M_(ret_left, data_left_[l++]); l >>= 1, r >>= 1; } return M_(ret_left, ret_right); } auto fold_right(int l, int r) const { assert(0 <= l and l <= r and r <= hsize_); value_type ret_left = M_(); value_type ret_right = M_(); l += hsize_, r += hsize_; while (l < r) { if (r & 1) ret_right = M_(ret_right, data_right_[--r]); if (l & 1) ret_left = M_(data_right_[l++], ret_left); l >>= 1, r >>= 1; } return M_(ret_right, ret_left); } void set(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_left_[i] = data_right_[i] = x; while (i > 1) { i >>= 1; data_left_[i] = M_(data_left_[i << 1 | 0], data_left_[i << 1 | 1]); data_right_[i] = M_(data_right_[i << 1 | 1], data_right_[i << 1 | 0]); } } template <typename T> void init_with_vector(const std::vector<T> &val) { data_left_.assign(size_, M_()); data_right_.assign(size_, M_()); for (int i = 0; i < (int) val.size(); ++i) { data_left_[hsize_ + i] = val[i]; data_right_[hsize_ + i] = val[i]; } for (int i = hsize_; --i >= 1;) { data_left_[i] = M_(data_left_[i << 1 | 0], data_left_[i << 1 | 1]); data_right_[i] = M_(data_right_[i << 1 | 1], data_right_[i << 1 | 0]); } } template <typename T> void init(const T &val) { init_with_vector(std::vector<value_type>(hsize_, val)); } }; } // namespace haar_lib #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 2 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" #include <algorithm> #line 6 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" namespace haar_lib { template <typename T> class hl_decomposition { int n_; std::vector<int> sub_, // subtree size par_, // parent id head_, // chain head id id_, // id[original id] = hld id rid_, // rid[hld id] = original id next_, // next node in a chain end_; // int dfs_sub(tree<T> &tr, int cur, int p) { par_[cur] = p; int t = 0; for (auto &e : tr[cur]) { if (e.to == p) continue; sub_[cur] += dfs_sub(tr, e.to, cur); if (sub_[e.to] > t) { t = sub_[e.to]; next_[cur] = e.to; std::swap(e, tr[cur][0]); } } return sub_[cur]; } void dfs_build(const tree<T> &tr, int cur, int &i) { id_[cur] = i; rid_[i] = cur; ++i; for (auto &e : tr[cur]) { if (e.to == par_[cur]) continue; head_[e.to] = (e.to == tr[cur][0].to ? head_[cur] : e.to); dfs_build(tr, e.to, i); } end_[cur] = i; } public: hl_decomposition() {} hl_decomposition(tree<T> tr, int root) : n_(tr.size()), sub_(n_, 1), par_(n_, -1), head_(n_), id_(n_), rid_(n_), next_(n_, -1), end_(n_, -1) { dfs_sub(tr, root, -1); int i = 0; dfs_build(tr, root, i); } std::vector<std::tuple<int, int, bool>> path_query_vertex(int x, int y) const { std::vector<std::tuple<int, int, bool>> ret; const int w = lca(x, y); { int y = w; bool d = true; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max(id_[head_[y]], id_[x]), r = id_[y] + 1; if (l != r) ret.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } } x = y; y = w; { std::vector<std::tuple<int, int, bool>> temp; bool d = false; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max({id_[head_[y]], id_[x], id_[w] + 1}), r = id_[y] + 1; if (l != r) temp.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } std::reverse(temp.begin(), temp.end()); ret.insert(ret.end(), temp.begin(), temp.end()); } return ret; } std::vector<std::pair<int, int>> path_query_edge(int x, int y) const { std::vector<std::pair<int, int>> ret; while (1) { if (id_[x] > id_[y]) std::swap(x, y); if (head_[x] == head_[y]) { if (x != y) ret.emplace_back(id_[x] + 1, id_[y] + 1); break; } ret.emplace_back(id_[head_[y]], id_[y] + 1); y = par_[head_[y]]; } return ret; } std::pair<int, int> subtree_query_edge(int x) const { return {id_[x] + 1, end_[x]}; } std::pair<int, int> subtree_query_vertex(int x) const { return {id_[x], end_[x]}; } int get_edge_id(int u, int v) const { // 辺に対応するid if (par_[u] == v) return id_[u]; if (par_[v] == u) return id_[v]; return -1; } int parent(int x) const { return par_[x]; }; int lca(int u, int v) const { while (1) { if (id_[u] > id_[v]) std::swap(u, v); if (head_[u] == head_[v]) return u; v = par_[head_[v]]; } } int get_id(int x) const { return id_[x]; } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 4 "Mylib/IO/input_vector.cpp" namespace haar_lib { template <typename T> std::vector<T> input_vector(int N) { std::vector<T> ret(N); for (int i = 0; i < N; ++i) std::cin >> ret[i]; return ret; } template <typename T> std::vector<std::vector<T>> input_vector(int N, int M) { std::vector<std::vector<T>> ret(N); for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M); return ret; } } // namespace haar_lib #line 4 "Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod() { return M; } constexpr modint() : val_(0) {} constexpr modint(int64_t n) { if (n >= M) val_ = n % M; else if (n < 0) val_ = n % M + M; else val_ = n; } constexpr auto &operator=(const modint &a) { val_ = a.val_; return *this; } constexpr auto &operator+=(const modint &a) { if (val_ + a.val_ >= M) val_ = (uint64_t) val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto &operator-=(const modint &a) { if (val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto &operator*=(const modint &a) { val_ = (uint64_t) val_ * a.val_ % M; return *this; } constexpr auto &operator/=(const modint &a) { val_ = (uint64_t) val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const { return modint(*this) += a; } constexpr auto operator-(const modint &a) const { return modint(*this) -= a; } constexpr auto operator*(const modint &a) const { return modint(*this) *= a; } constexpr auto operator/(const modint &a) const { return modint(*this) /= a; } constexpr bool operator==(const modint &a) const { return val_ == a.val_; } constexpr bool operator!=(const modint &a) const { return val_ != a.val_; } constexpr auto &operator++() { *this += 1; return *this; } constexpr auto &operator--() { *this -= 1; return *this; } constexpr auto operator++(int) { auto t = *this; *this += 1; return t; } constexpr auto operator--(int) { auto t = *this; *this -= 1; return t; } constexpr static modint pow(int64_t n, int64_t p) { if (p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for (; p; (e *= e) %= M, p >>= 1) if (p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a) { int64_t b = M, u = 1, v = 0; while (b) { int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if (u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); } constexpr auto pow(int64_t p) const { return pow(val_, p); } constexpr auto inv() const { return inv(val_); } friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); } friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; } friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; } friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; } friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; } friend std::istream &operator>>(std::istream &s, modint &a) { s >> a.val_; return s; } friend std::ostream &operator<<(std::ostream &s, const modint &a) { s << a.val_; return s; } template <int N> static auto div() { static auto value = inv(N); return value; } explicit operator int32_t() const noexcept { return val_; } explicit operator int64_t() const noexcept { return val_; } }; } // namespace haar_lib #line 14 "test/yosupo-judge/vertex_set_path_composite/main.test.cpp" namespace hl = haar_lib; using mint = hl::modint<998244353>; using Monoid = hl::dual_monoid<hl::affine_monoid<mint>>; const Monoid M; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N, Q; std::cin >> N >> Q; auto f = hl::input_vector<std::pair<mint, mint>>(N); hl::tree<int> tree(N); tree.read<0, false, false>(N - 1); hl::hl_decomposition<int> hld(tree, 0); hl::segment_tree_both_foldable<Monoid> seg(N); for (int i = 0; i < N; ++i) { seg.set(hld.get_id(i), f[i]); } for (auto [type] : hl::input_tuples<int>(Q)) { if (type == 0) { int64_t p, c, d; std::cin >> p >> c >> d; seg.set(hld.get_id(p), std::make_pair(c, d)); } else { int64_t u, v, x; std::cin >> u >> v >> x; auto res = M(); for (auto [l, r, d] : hld.path_query_vertex(u, v)) { if (d) res = M(res, seg.fold_left(l, r)); else res = M(res, seg.fold_right(l, r)); } mint ans = res.first * x + res.second; std::cout << ans << "\n"; } } return 0; }