kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/yosupo-judge/vertex_set_path_composite/main.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"

#include <iostream>
#include <utility>
#include <vector>
#include "Mylib/AlgebraicStructure/Monoid/affine.cpp"
#include "Mylib/AlgebraicStructure/Monoid/dual.cpp"
#include "Mylib/DataStructure/SegmentTree/segment_tree_both_foldable.cpp"
#include "Mylib/Graph/Template/graph.cpp"
#include "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/IO/input_vector.cpp"
#include "Mylib/Number/Mint/mint.cpp"

namespace hl = haar_lib;

using mint   = hl::modint<998244353>;
using Monoid = hl::dual_monoid<hl::affine_monoid<mint>>;
const Monoid M;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int N, Q;
  std::cin >> N >> Q;

  auto f = hl::input_vector<std::pair<mint, mint>>(N);
  hl::tree<int> tree(N);
  tree.read<0, false, false>(N - 1);

  hl::hl_decomposition<int> hld(tree, 0);
  hl::segment_tree_both_foldable<Monoid> seg(N);

  for (int i = 0; i < N; ++i) {
    seg.set(hld.get_id(i), f[i]);
  }

  for (auto [type] : hl::input_tuples<int>(Q)) {
    if (type == 0) {
      int64_t p, c, d;
      std::cin >> p >> c >> d;

      seg.set(hld.get_id(p), std::make_pair(c, d));
    } else {
      int64_t u, v, x;
      std::cin >> u >> v >> x;

      auto res = M();
      for (auto [l, r, d] : hld.path_query_vertex(u, v)) {
        if (d)
          res = M(res, seg.fold_left(l, r));
        else
          res = M(res, seg.fold_right(l, r));
      }

      mint ans = res.first * x + res.second;
      std::cout << ans << "\n";
    }
  }

  return 0;
}
#line 1 "test/yosupo-judge/vertex_set_path_composite/main.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"

#include <iostream>
#include <utility>
#include <vector>
#line 3 "Mylib/AlgebraicStructure/Monoid/affine.cpp"

namespace haar_lib {
  template <typename T>
  struct affine_monoid {
    using value_type = std::pair<T, T>;
    value_type operator()() const { return std::make_pair(1, 0); }
    value_type operator()(const value_type &a, const value_type &b) const {
      return std::make_pair(a.first * b.first, a.first * b.second + a.second);
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/Monoid/dual.cpp"

namespace haar_lib {
  template <typename Monoid>
  struct dual_monoid {
    using value_type = typename Monoid::value_type;
    const static Monoid M;
    value_type operator()() const { return M(); }
    value_type operator()(const value_type &a, const value_type &b) const { return M(b, a); }
  };
}  // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/segment_tree_both_foldable.cpp"
#include <cassert>
#line 4 "Mylib/DataStructure/SegmentTree/segment_tree_both_foldable.cpp"

namespace haar_lib {
  template <typename Monoid>
  class segment_tree_both_foldable {
  public:
    using value_type = typename Monoid::value_type;

  private:
    Monoid M_;
    int depth_, size_, hsize_;
    std::vector<value_type> data_left_, data_right_;

  public:
    segment_tree_both_foldable() {}
    segment_tree_both_foldable(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
                                        size_(1 << depth_),
                                        hsize_(size_ / 2),
                                        data_left_(size_, M_()),
                                        data_right_(size_, M_()) {}

    auto operator[](int i) const {
      assert(0 <= i and i < hsize_);
      return data_left_[hsize_ + i];
    }

    auto fold_left(int l, int r) const {
      assert(0 <= l and l <= r and r <= hsize_);
      value_type ret_left  = M_();
      value_type ret_right = M_();

      l += hsize_, r += hsize_;
      while (l < r) {
        if (r & 1) ret_right = M_(data_left_[--r], ret_right);
        if (l & 1) ret_left = M_(ret_left, data_left_[l++]);
        l >>= 1, r >>= 1;
      }

      return M_(ret_left, ret_right);
    }

    auto fold_right(int l, int r) const {
      assert(0 <= l and l <= r and r <= hsize_);
      value_type ret_left  = M_();
      value_type ret_right = M_();

      l += hsize_, r += hsize_;
      while (l < r) {
        if (r & 1) ret_right = M_(ret_right, data_right_[--r]);
        if (l & 1) ret_left = M_(data_right_[l++], ret_left);
        l >>= 1, r >>= 1;
      }

      return M_(ret_right, ret_left);
    }

    void set(int i, const value_type &x) {
      assert(0 <= i and i < hsize_);
      i += hsize_;
      data_left_[i] = data_right_[i] = x;
      while (i > 1) {
        i >>= 1;
        data_left_[i]  = M_(data_left_[i << 1 | 0], data_left_[i << 1 | 1]);
        data_right_[i] = M_(data_right_[i << 1 | 1], data_right_[i << 1 | 0]);
      }
    }

    template <typename T>
    void init_with_vector(const std::vector<T> &val) {
      data_left_.assign(size_, M_());
      data_right_.assign(size_, M_());

      for (int i = 0; i < (int) val.size(); ++i) {
        data_left_[hsize_ + i]  = val[i];
        data_right_[hsize_ + i] = val[i];
      }
      for (int i = hsize_; --i >= 1;) {
        data_left_[i]  = M_(data_left_[i << 1 | 0], data_left_[i << 1 | 1]);
        data_right_[i] = M_(data_right_[i << 1 | 1], data_right_[i << 1 | 0]);
      }
    }

    template <typename T>
    void init(const T &val) {
      init_with_vector(std::vector<value_type>(hsize_, val));
    }
  };
}  // namespace haar_lib
#line 4 "Mylib/Graph/Template/graph.cpp"

namespace haar_lib {
  template <typename T>
  struct edge {
    int from, to;
    T cost;
    int index = -1;
    edge() {}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
  };

  template <typename T>
  struct graph {
    using weight_type = T;
    using edge_type   = edge<T>;

    std::vector<std::vector<edge<T>>> data;

    auto& operator[](size_t i) { return data[i]; }
    const auto& operator[](size_t i) const { return data[i]; }

    auto begin() const { return data.begin(); }
    auto end() const { return data.end(); }

    graph() {}
    graph(int N) : data(N) {}

    bool empty() const { return data.empty(); }
    int size() const { return data.size(); }

    void add_edge(int i, int j, T w, int index = -1) {
      data[i].emplace_back(i, j, w, index);
    }

    void add_undirected(int i, int j, T w, int index = -1) {
      add_edge(i, j, w, index);
      add_edge(j, i, w, index);
    }

    template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
    void read(int M) {
      for (int i = 0; i < M; ++i) {
        int u, v;
        std::cin >> u >> v;
        u -= I;
        v -= I;
        T w = 1;
        if (WEIGHTED) std::cin >> w;
        if (DIRECTED)
          add_edge(u, v, w, i);
        else
          add_undirected(u, v, w, i);
      }
    }
  };

  template <typename T>
  using tree = graph<T>;
}  // namespace haar_lib
#line 2 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp"
#include <algorithm>
#line 6 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp"

namespace haar_lib {
  template <typename T>
  class hl_decomposition {
    int n_;

    std::vector<int> sub_,  // subtree size
        par_,               // parent id
        head_,              // chain head id
        id_,                // id[original id] = hld id
        rid_,               // rid[hld id] = original id
        next_,              // next node in a chain
        end_;               //

    int dfs_sub(tree<T> &tr, int cur, int p) {
      par_[cur] = p;
      int t     = 0;
      for (auto &e : tr[cur]) {
        if (e.to == p) continue;
        sub_[cur] += dfs_sub(tr, e.to, cur);
        if (sub_[e.to] > t) {
          t          = sub_[e.to];
          next_[cur] = e.to;
          std::swap(e, tr[cur][0]);
        }
      }
      return sub_[cur];
    }

    void dfs_build(const tree<T> &tr, int cur, int &i) {
      id_[cur] = i;
      rid_[i]  = cur;
      ++i;

      for (auto &e : tr[cur]) {
        if (e.to == par_[cur]) continue;
        head_[e.to] = (e.to == tr[cur][0].to ? head_[cur] : e.to);
        dfs_build(tr, e.to, i);
      }

      end_[cur] = i;
    }

  public:
    hl_decomposition() {}
    hl_decomposition(tree<T> tr, int root) : n_(tr.size()), sub_(n_, 1), par_(n_, -1), head_(n_), id_(n_), rid_(n_), next_(n_, -1), end_(n_, -1) {
      dfs_sub(tr, root, -1);
      int i = 0;
      dfs_build(tr, root, i);
    }

    std::vector<std::tuple<int, int, bool>> path_query_vertex(int x, int y) const {
      std::vector<std::tuple<int, int, bool>> ret;
      const int w = lca(x, y);

      {
        int y  = w;
        bool d = true;
        while (1) {
          if (id_[x] > id_[y]) std::swap(x, y), d = not d;
          int l = std::max(id_[head_[y]], id_[x]), r = id_[y] + 1;
          if (l != r) ret.emplace_back(l, r, d);
          if (head_[x] == head_[y]) break;
          y = par_[head_[y]];
        }
      }

      x = y;
      y = w;

      {
        std::vector<std::tuple<int, int, bool>> temp;
        bool d = false;
        while (1) {
          if (id_[x] > id_[y]) std::swap(x, y), d = not d;
          int l = std::max({id_[head_[y]], id_[x], id_[w] + 1}), r = id_[y] + 1;
          if (l != r) temp.emplace_back(l, r, d);
          if (head_[x] == head_[y]) break;
          y = par_[head_[y]];
        }

        std::reverse(temp.begin(), temp.end());
        ret.insert(ret.end(), temp.begin(), temp.end());
      }

      return ret;
    }

    std::vector<std::pair<int, int>> path_query_edge(int x, int y) const {
      std::vector<std::pair<int, int>> ret;
      while (1) {
        if (id_[x] > id_[y]) std::swap(x, y);
        if (head_[x] == head_[y]) {
          if (x != y) ret.emplace_back(id_[x] + 1, id_[y] + 1);
          break;
        }
        ret.emplace_back(id_[head_[y]], id_[y] + 1);
        y = par_[head_[y]];
      }
      return ret;
    }

    std::pair<int, int> subtree_query_edge(int x) const {
      return {id_[x] + 1, end_[x]};
    }

    std::pair<int, int> subtree_query_vertex(int x) const {
      return {id_[x], end_[x]};
    }

    int get_edge_id(int u, int v) const {  // 辺に対応するid
      if (par_[u] == v) return id_[u];
      if (par_[v] == u) return id_[v];
      return -1;
    }

    int parent(int x) const { return par_[x]; };

    int lca(int u, int v) const {
      while (1) {
        if (id_[u] > id_[v]) std::swap(u, v);
        if (head_[u] == head_[v]) return u;
        v = par_[head_[v]];
      }
    }

    int get_id(int x) const {
      return id_[x];
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#line 6 "Mylib/IO/input_tuple.cpp"

namespace haar_lib {
  template <typename T, size_t... I>
  static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
    (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
  }

  template <typename T, typename U>
  std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
    s >> value.first >> value.second;
    return s;
  }

  template <typename... Args>
  std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
    input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
    return s;
  }
}  // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"

namespace haar_lib {
  template <typename... Args>
  class InputTuples {
    struct iter {
      using value_type = std::tuple<Args...>;
      value_type value;
      bool fetched = false;
      int N, c = 0;

      value_type operator*() {
        if (not fetched) {
          std::cin >> value;
        }
        return value;
      }

      void operator++() {
        ++c;
        fetched = false;
      }

      bool operator!=(iter &) const {
        return c < N;
      }

      iter(int N) : N(N) {}
    };

    int N;

  public:
    InputTuples(int N) : N(N) {}

    iter begin() const { return iter(N); }
    iter end() const { return iter(N); }
  };

  template <typename... Args>
  auto input_tuples(int N) {
    return InputTuples<Args...>(N);
  }
}  // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"

namespace haar_lib {
  template <typename T>
  std::vector<T> input_vector(int N) {
    std::vector<T> ret(N);
    for (int i = 0; i < N; ++i) std::cin >> ret[i];
    return ret;
  }

  template <typename T>
  std::vector<std::vector<T>> input_vector(int N, int M) {
    std::vector<std::vector<T>> ret(N);
    for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
    return ret;
  }
}  // namespace haar_lib
#line 4 "Mylib/Number/Mint/mint.cpp"

namespace haar_lib {
  template <int32_t M>
  class modint {
    uint32_t val_;

  public:
    constexpr static auto mod() { return M; }

    constexpr modint() : val_(0) {}
    constexpr modint(int64_t n) {
      if (n >= M)
        val_ = n % M;
      else if (n < 0)
        val_ = n % M + M;
      else
        val_ = n;
    }

    constexpr auto &operator=(const modint &a) {
      val_ = a.val_;
      return *this;
    }
    constexpr auto &operator+=(const modint &a) {
      if (val_ + a.val_ >= M)
        val_ = (uint64_t) val_ + a.val_ - M;
      else
        val_ += a.val_;
      return *this;
    }
    constexpr auto &operator-=(const modint &a) {
      if (val_ < a.val_) val_ += M;
      val_ -= a.val_;
      return *this;
    }
    constexpr auto &operator*=(const modint &a) {
      val_ = (uint64_t) val_ * a.val_ % M;
      return *this;
    }
    constexpr auto &operator/=(const modint &a) {
      val_ = (uint64_t) val_ * a.inv().val_ % M;
      return *this;
    }

    constexpr auto operator+(const modint &a) const { return modint(*this) += a; }
    constexpr auto operator-(const modint &a) const { return modint(*this) -= a; }
    constexpr auto operator*(const modint &a) const { return modint(*this) *= a; }
    constexpr auto operator/(const modint &a) const { return modint(*this) /= a; }

    constexpr bool operator==(const modint &a) const { return val_ == a.val_; }
    constexpr bool operator!=(const modint &a) const { return val_ != a.val_; }

    constexpr auto &operator++() {
      *this += 1;
      return *this;
    }
    constexpr auto &operator--() {
      *this -= 1;
      return *this;
    }

    constexpr auto operator++(int) {
      auto t = *this;
      *this += 1;
      return t;
    }
    constexpr auto operator--(int) {
      auto t = *this;
      *this -= 1;
      return t;
    }

    constexpr static modint pow(int64_t n, int64_t p) {
      if (p < 0) return pow(n, -p).inv();

      int64_t ret = 1, e = n % M;
      for (; p; (e *= e) %= M, p >>= 1)
        if (p & 1) (ret *= e) %= M;
      return ret;
    }

    constexpr static modint inv(int64_t a) {
      int64_t b = M, u = 1, v = 0;

      while (b) {
        int64_t t = a / b;
        a -= t * b;
        std::swap(a, b);
        u -= t * v;
        std::swap(u, v);
      }

      u %= M;
      if (u < 0) u += M;

      return u;
    }

    constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); }

    constexpr auto pow(int64_t p) const { return pow(val_, p); }
    constexpr auto inv() const { return inv(val_); }

    friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); }

    friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; }
    friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; }
    friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; }
    friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; }

    friend std::istream &operator>>(std::istream &s, modint &a) {
      s >> a.val_;
      return s;
    }
    friend std::ostream &operator<<(std::ostream &s, const modint &a) {
      s << a.val_;
      return s;
    }

    template <int N>
    static auto div() {
      static auto value = inv(N);
      return value;
    }

    explicit operator int32_t() const noexcept { return val_; }
    explicit operator int64_t() const noexcept { return val_; }
  };
}  // namespace haar_lib
#line 14 "test/yosupo-judge/vertex_set_path_composite/main.test.cpp"

namespace hl = haar_lib;

using mint   = hl::modint<998244353>;
using Monoid = hl::dual_monoid<hl::affine_monoid<mint>>;
const Monoid M;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int N, Q;
  std::cin >> N >> Q;

  auto f = hl::input_vector<std::pair<mint, mint>>(N);
  hl::tree<int> tree(N);
  tree.read<0, false, false>(N - 1);

  hl::hl_decomposition<int> hld(tree, 0);
  hl::segment_tree_both_foldable<Monoid> seg(N);

  for (int i = 0; i < N; ++i) {
    seg.set(hld.get_id(i), f[i]);
  }

  for (auto [type] : hl::input_tuples<int>(Q)) {
    if (type == 0) {
      int64_t p, c, d;
      std::cin >> p >> c >> d;

      seg.set(hld.get_id(p), std::make_pair(c, d));
    } else {
      int64_t u, v, x;
      std::cin >> u >> v >> x;

      auto res = M();
      for (auto [l, r, d] : hld.path_query_vertex(u, v)) {
        if (d)
          res = M(res, seg.fold_left(l, r));
        else
          res = M(res, seg.fold_right(l, r));
      }

      mint ans = res.first * x + res.second;
      std::cout << ans << "\n";
    }
  }

  return 0;
}
Back to top page