kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/yukicoder/1030/main.test.cpp

Depends on

Code

#define PROBLEM "https://yukicoder.me/problems/no/1030"

#include <algorithm>
#include <functional>
#include <iostream>
#include <vector>
#include "Mylib/AlgebraicStructure/Monoid/max.cpp"
#include "Mylib/AlgebraicStructure/Monoid/maybe.cpp"
#include "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include "Mylib/Graph/Template/graph.cpp"
#include "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/IO/input_vector.cpp"

namespace hl = haar_lib;

struct lca_semigroup {
  using value_type = int;
  static std::function<int(int, int)> lca;
  value_type operator()(value_type a, value_type b) const {
    return lca(a, b);
  }
};

std::function<int(int, int)> lca_semigroup::lca;

int main() {
  int N, K, Q;
  std::cin >> N >> K >> Q;

  auto C = hl::input_vector<int>(N);
  auto A = hl::input_vector<int>(K);
  for (auto &x : A) --x;

  hl::tree<int> tree(N);
  tree.read<1, false, false>(N - 1);

  hl::hl_decomposition<int> hld(tree, 0);
  lca_semigroup::lca = [&](int a, int b) { return hld.lca(a, b); };

  hl::segment_tree<hl::max_monoid<int>> seg1(N);
  for (int i = 0; i < N; ++i) {
    seg1.set(hld.get_id(i), {C[i]});
  }

  hl::segment_tree<hl::maybe_monoid<lca_semigroup>> seg2(K);
  seg2.init_with_vector(A);

  for (auto [T] : hl::input_tuples<int>(Q)) {
    if (T == 1) {
      int X, Y;
      std::cin >> X >> Y;
      --X;
      --Y;

      seg2.set(X, Y);
    } else {
      int L, R;
      std::cin >> L >> R;

      int lca = *seg2.fold(L - 1, R);
      int ans = 0;

      for (auto [l, r, d] : hld.path_query_vertex(0, lca)) {
        ans = std::max(ans, seg1.fold(l, r).value());
      }

      std::cout << ans << "\n";
    }
  }

  return 0;
}
#line 1 "test/yukicoder/1030/main.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1030"

#include <algorithm>
#include <functional>
#include <iostream>
#include <vector>
#line 3 "Mylib/AlgebraicStructure/Monoid/max.cpp"
#include <optional>

namespace haar_lib {
  template <typename T>
  struct max_monoid {
    using value_type = std::optional<T>;

    value_type operator()() const { return {}; }
    value_type operator()(const value_type &a, const value_type &b) const {
      if (not a) return b;
      if (not b) return a;
      return {std::max(*a, *b)};
    }
  };
}  // namespace haar_lib
#line 3 "Mylib/AlgebraicStructure/Monoid/maybe.cpp"

namespace haar_lib {
  template <typename Semigroup>
  struct maybe_monoid {
    using value_type = std::optional<typename Semigroup::value_type>;
    const static Semigroup S;

    value_type operator()() const { return std::nullopt; }
    value_type operator()(const value_type &a, const value_type &b) const {
      if (not a) return b;
      if (not b) return a;
      return {S(*a, *b)};
    }
  };
}  // namespace haar_lib
#line 3 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include <cassert>
#line 6 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"

namespace haar_lib {
  template <typename Monoid>
  class segment_tree {
  public:
    using value_type = typename Monoid::value_type;

  private:
    Monoid M_;
    int depth_, size_, hsize_;
    std::vector<value_type> data_;

  public:
    segment_tree() {}
    segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
                          size_(1 << depth_),
                          hsize_(size_ / 2),
                          data_(size_, M_()) {}

    auto operator[](int i) const {
      assert(0 <= i and i < hsize_);
      return data_[hsize_ + i];
    }

    auto fold(int l, int r) const {
      assert(0 <= l and l <= r and r <= hsize_);
      value_type ret_left  = M_();
      value_type ret_right = M_();

      int L = l + hsize_, R = r + hsize_;
      while (L < R) {
        if (R & 1) ret_right = M_(data_[--R], ret_right);
        if (L & 1) ret_left = M_(ret_left, data_[L++]);
        L >>= 1, R >>= 1;
      }

      return M_(ret_left, ret_right);
    }

    auto fold_all() const {
      return data_[1];
    }

    void set(int i, const value_type &x) {
      assert(0 <= i and i < hsize_);
      i += hsize_;
      data_[i] = x;
      while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }

    void update(int i, const value_type &x) {
      assert(0 <= i and i < hsize_);
      i += hsize_;
      data_[i] = M_(data_[i], x);
      while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }

    template <typename T>
    void init_with_vector(const std::vector<T> &val) {
      data_.assign(size_, M_());
      for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i];
      for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }

    template <typename T>
    void init(const T &val) {
      init_with_vector(std::vector<value_type>(hsize_, val));
    }

  private:
    template <bool Lower, typename F>
    int bound(const int l, const int r, value_type x, F f) const {
      std::vector<int> pl, pr;
      int L = l + hsize_;
      int R = r + hsize_;
      while (L < R) {
        if (R & 1) pr.push_back(--R);
        if (L & 1) pl.push_back(L++);
        L >>= 1, R >>= 1;
      }

      std::reverse(pr.begin(), pr.end());
      pl.insert(pl.end(), pr.begin(), pr.end());

      value_type a = M_();

      for (int i : pl) {
        auto b = M_(a, data_[i]);

        if ((Lower and not f(b, x)) or (not Lower and f(x, b))) {
          while (i < hsize_) {
            const auto c = M_(a, data_[i << 1 | 0]);
            if ((Lower and not f(c, x)) or (not Lower and f(x, c))) {
              i = i << 1 | 0;
            } else {
              a = c;
              i = i << 1 | 1;
            }
          }

          return i - hsize_;
        }

        a = b;
      }

      return r;
    }

  public:
    template <typename F = std::less<value_type>>
    int lower_bound(int l, int r, value_type x, F f = F()) const {
      return bound<true>(l, r, x, f);
    }

    template <typename F = std::less<value_type>>
    int upper_bound(int l, int r, value_type x, F f = F()) const {
      return bound<false>(l, r, x, f);
    }
  };
}  // namespace haar_lib
#line 4 "Mylib/Graph/Template/graph.cpp"

namespace haar_lib {
  template <typename T>
  struct edge {
    int from, to;
    T cost;
    int index = -1;
    edge() {}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
  };

  template <typename T>
  struct graph {
    using weight_type = T;
    using edge_type   = edge<T>;

    std::vector<std::vector<edge<T>>> data;

    auto& operator[](size_t i) { return data[i]; }
    const auto& operator[](size_t i) const { return data[i]; }

    auto begin() const { return data.begin(); }
    auto end() const { return data.end(); }

    graph() {}
    graph(int N) : data(N) {}

    bool empty() const { return data.empty(); }
    int size() const { return data.size(); }

    void add_edge(int i, int j, T w, int index = -1) {
      data[i].emplace_back(i, j, w, index);
    }

    void add_undirected(int i, int j, T w, int index = -1) {
      add_edge(i, j, w, index);
      add_edge(j, i, w, index);
    }

    template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
    void read(int M) {
      for (int i = 0; i < M; ++i) {
        int u, v;
        std::cin >> u >> v;
        u -= I;
        v -= I;
        T w = 1;
        if (WEIGHTED) std::cin >> w;
        if (DIRECTED)
          add_edge(u, v, w, i);
        else
          add_undirected(u, v, w, i);
      }
    }
  };

  template <typename T>
  using tree = graph<T>;
}  // namespace haar_lib
#line 3 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp"
#include <utility>
#line 6 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp"

namespace haar_lib {
  template <typename T>
  class hl_decomposition {
    int n_;

    std::vector<int> sub_,  // subtree size
        par_,               // parent id
        head_,              // chain head id
        id_,                // id[original id] = hld id
        rid_,               // rid[hld id] = original id
        next_,              // next node in a chain
        end_;               //

    int dfs_sub(tree<T> &tr, int cur, int p) {
      par_[cur] = p;
      int t     = 0;
      for (auto &e : tr[cur]) {
        if (e.to == p) continue;
        sub_[cur] += dfs_sub(tr, e.to, cur);
        if (sub_[e.to] > t) {
          t          = sub_[e.to];
          next_[cur] = e.to;
          std::swap(e, tr[cur][0]);
        }
      }
      return sub_[cur];
    }

    void dfs_build(const tree<T> &tr, int cur, int &i) {
      id_[cur] = i;
      rid_[i]  = cur;
      ++i;

      for (auto &e : tr[cur]) {
        if (e.to == par_[cur]) continue;
        head_[e.to] = (e.to == tr[cur][0].to ? head_[cur] : e.to);
        dfs_build(tr, e.to, i);
      }

      end_[cur] = i;
    }

  public:
    hl_decomposition() {}
    hl_decomposition(tree<T> tr, int root) : n_(tr.size()), sub_(n_, 1), par_(n_, -1), head_(n_), id_(n_), rid_(n_), next_(n_, -1), end_(n_, -1) {
      dfs_sub(tr, root, -1);
      int i = 0;
      dfs_build(tr, root, i);
    }

    std::vector<std::tuple<int, int, bool>> path_query_vertex(int x, int y) const {
      std::vector<std::tuple<int, int, bool>> ret;
      const int w = lca(x, y);

      {
        int y  = w;
        bool d = true;
        while (1) {
          if (id_[x] > id_[y]) std::swap(x, y), d = not d;
          int l = std::max(id_[head_[y]], id_[x]), r = id_[y] + 1;
          if (l != r) ret.emplace_back(l, r, d);
          if (head_[x] == head_[y]) break;
          y = par_[head_[y]];
        }
      }

      x = y;
      y = w;

      {
        std::vector<std::tuple<int, int, bool>> temp;
        bool d = false;
        while (1) {
          if (id_[x] > id_[y]) std::swap(x, y), d = not d;
          int l = std::max({id_[head_[y]], id_[x], id_[w] + 1}), r = id_[y] + 1;
          if (l != r) temp.emplace_back(l, r, d);
          if (head_[x] == head_[y]) break;
          y = par_[head_[y]];
        }

        std::reverse(temp.begin(), temp.end());
        ret.insert(ret.end(), temp.begin(), temp.end());
      }

      return ret;
    }

    std::vector<std::pair<int, int>> path_query_edge(int x, int y) const {
      std::vector<std::pair<int, int>> ret;
      while (1) {
        if (id_[x] > id_[y]) std::swap(x, y);
        if (head_[x] == head_[y]) {
          if (x != y) ret.emplace_back(id_[x] + 1, id_[y] + 1);
          break;
        }
        ret.emplace_back(id_[head_[y]], id_[y] + 1);
        y = par_[head_[y]];
      }
      return ret;
    }

    std::pair<int, int> subtree_query_edge(int x) const {
      return {id_[x] + 1, end_[x]};
    }

    std::pair<int, int> subtree_query_vertex(int x) const {
      return {id_[x], end_[x]};
    }

    int get_edge_id(int u, int v) const {  // 辺に対応するid
      if (par_[u] == v) return id_[u];
      if (par_[v] == u) return id_[v];
      return -1;
    }

    int parent(int x) const { return par_[x]; };

    int lca(int u, int v) const {
      while (1) {
        if (id_[u] > id_[v]) std::swap(u, v);
        if (head_[u] == head_[v]) return u;
        v = par_[head_[v]];
      }
    }

    int get_id(int x) const {
      return id_[x];
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#line 6 "Mylib/IO/input_tuple.cpp"

namespace haar_lib {
  template <typename T, size_t... I>
  static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
    (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
  }

  template <typename T, typename U>
  std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
    s >> value.first >> value.second;
    return s;
  }

  template <typename... Args>
  std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
    input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
    return s;
  }
}  // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"

namespace haar_lib {
  template <typename... Args>
  class InputTuples {
    struct iter {
      using value_type = std::tuple<Args...>;
      value_type value;
      bool fetched = false;
      int N, c = 0;

      value_type operator*() {
        if (not fetched) {
          std::cin >> value;
        }
        return value;
      }

      void operator++() {
        ++c;
        fetched = false;
      }

      bool operator!=(iter &) const {
        return c < N;
      }

      iter(int N) : N(N) {}
    };

    int N;

  public:
    InputTuples(int N) : N(N) {}

    iter begin() const { return iter(N); }
    iter end() const { return iter(N); }
  };

  template <typename... Args>
  auto input_tuples(int N) {
    return InputTuples<Args...>(N);
  }
}  // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"

namespace haar_lib {
  template <typename T>
  std::vector<T> input_vector(int N) {
    std::vector<T> ret(N);
    for (int i = 0; i < N; ++i) std::cin >> ret[i];
    return ret;
  }

  template <typename T>
  std::vector<std::vector<T>> input_vector(int N, int M) {
    std::vector<std::vector<T>> ret(N);
    for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
    return ret;
  }
}  // namespace haar_lib
#line 14 "test/yukicoder/1030/main.test.cpp"

namespace hl = haar_lib;

struct lca_semigroup {
  using value_type = int;
  static std::function<int(int, int)> lca;
  value_type operator()(value_type a, value_type b) const {
    return lca(a, b);
  }
};

std::function<int(int, int)> lca_semigroup::lca;

int main() {
  int N, K, Q;
  std::cin >> N >> K >> Q;

  auto C = hl::input_vector<int>(N);
  auto A = hl::input_vector<int>(K);
  for (auto &x : A) --x;

  hl::tree<int> tree(N);
  tree.read<1, false, false>(N - 1);

  hl::hl_decomposition<int> hld(tree, 0);
  lca_semigroup::lca = [&](int a, int b) { return hld.lca(a, b); };

  hl::segment_tree<hl::max_monoid<int>> seg1(N);
  for (int i = 0; i < N; ++i) {
    seg1.set(hld.get_id(i), {C[i]});
  }

  hl::segment_tree<hl::maybe_monoid<lca_semigroup>> seg2(K);
  seg2.init_with_vector(A);

  for (auto [T] : hl::input_tuples<int>(Q)) {
    if (T == 1) {
      int X, Y;
      std::cin >> X >> Y;
      --X;
      --Y;

      seg2.set(X, Y);
    } else {
      int L, R;
      std::cin >> L >> R;

      int lca = *seg2.fold(L - 1, R);
      int ans = 0;

      for (auto [l, r, d] : hld.path_query_vertex(0, lca)) {
        ans = std::max(ans, seg1.fold(l, r).value());
      }

      std::cout << ans << "\n";
    }
  }

  return 0;
}
Back to top page