#define PROBLEM "https://yukicoder.me/problems/no/194" #include <algorithm> #include <iostream> #include <numeric> #include <vector> #include "Mylib/IO/input_vector.cpp" #include "Mylib/LinearAlgebra/inverse_matrix.cpp" #include "Mylib/LinearAlgebra/square_matrix.cpp" #include "Mylib/Number/Mint/mint.cpp" namespace hl = haar_lib; using mint = hl::modint<1000000007>; static int N; using M = hl::square_matrix_dyn<mint, N>; std::pair<mint, mint> solve1(int64_t N, int64_t K, std::vector<int> A) { M m; for (int i = 0; i < N; ++i) m[0][i] = 1; for (int i = 0; i < N - 1; ++i) m[i + 1][i] = 1; std::reverse(A.begin(), A.end()); mint f = 0; { auto m2 = m.pow(K - N); for (int i = 0; i < N; ++i) f += m2[0][i] * A[i]; } mint s = std::accumulate(A.begin(), A.end(), mint(0)); { auto c = hl::inverse_matrix(M::unit() - m).value(); auto temp = (M::unit() - m.pow(K - N + 1)) * c - M::unit(); s += dot(temp[0], M::vector_type(A)); } return {f, s}; } std::pair<mint, mint> solve2(int64_t N, int64_t K, std::vector<int> A) { std::vector<mint> v(K); mint temp = 0; for (int i = 0; i < N; ++i) { temp += A[i]; v[i] = A[i]; } for (int i = N; i < K; ++i) { v[i] = temp; temp += v[i]; temp -= v[i - N]; } mint f = v.back(); mint s = std::accumulate(v.begin(), v.end(), mint(0)); return {f, s}; } int main() { int64_t K; std::cin >> N >> K; auto A = hl::input_vector<int>(N); auto [f, s] = K > 1000000 ? solve1(N, K, A) : solve2(N, K, A); std::cout << f << " " << s << "\n"; return 0; }
#line 1 "test/yukicoder/194/main.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/194" #include <algorithm> #include <iostream> #include <numeric> #include <vector> #line 4 "Mylib/IO/input_vector.cpp" namespace haar_lib { template <typename T> std::vector<T> input_vector(int N) { std::vector<T> ret(N); for (int i = 0; i < N; ++i) std::cin >> ret[i]; return ret; } template <typename T> std::vector<std::vector<T>> input_vector(int N, int M) { std::vector<std::vector<T>> ret(N); for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M); return ret; } } // namespace haar_lib #line 2 "Mylib/LinearAlgebra/inverse_matrix.cpp" #include <optional> #include <utility> namespace haar_lib { template <typename M> std::optional<M> inverse_matrix(M m) { using T = typename M::value_type; const int N = m.size(); M ret = M::unit(); for (int i = 0; i < N; ++i) { int p = i; for (int j = i; j < N; ++j) { if (m[i][j] != 0) { p = j; break; } } std::swap(m[i], m[p]); std::swap(ret[i], ret[p]); { T d = m[i][i]; if (d == 0) return std::nullopt; for (int j = 0; j < N; ++j) { m[i][j] /= d; ret[i][j] /= d; } } for (int j = 0; j < N; ++j) { if (i == j) continue; T d = m[j][i] / m[i][i]; for (int k = 0; k < N; ++k) { m[j][k] -= m[i][k] * d; ret[j][k] -= ret[i][k] * d; } } } return ret; } } // namespace haar_lib #line 2 "Mylib/LinearAlgebra/square_matrix.cpp" #include <cstdint> #line 6 "Mylib/LinearAlgebra/square_matrix.cpp" namespace haar_lib { template <typename T, int &N> class vector_dyn { public: using value_type = T; private: std::vector<T> data_; public: vector_dyn() : data_(N) {} vector_dyn(T value) : data_(N, value) {} vector_dyn(std::initializer_list<T> list) : data_(N) { int i = 0; for (auto it = list.begin(); it != list.end(); ++it) data_[i++] = *it; } vector_dyn(const vector_dyn &that) : data_(that.data_) {} template <typename U> vector_dyn(const std::vector<U> &that) : data_(that.begin(), that.end()) {} bool operator==(const vector_dyn &that) { return data_ == that.data_; } bool operator!=(const vector_dyn &that) { return !(*this == that); } auto &operator=(const vector_dyn &that) { data_ = that.data_; return *this; } auto &operator+=(const vector_dyn &that) { for (int i = 0; i < N; ++i) data_[i] += that.data_[i]; return *this; } auto &operator-=(const vector_dyn &that) { for (int i = 0; i < N; ++i) data_[i] -= that.data_[i]; return *this; } friend auto dot(const vector_dyn &a, const vector_dyn &b) { T ret = 0; for (int i = 0; i < N; ++i) ret += a.data_[i] * b.data_[i]; return ret; } auto operator+(const vector_dyn &that) const { return vector(*this) += that; } auto operator-(const vector_dyn &that) const { return vector(*this) -= that; } auto &operator[](int i) { return data_[i]; } const auto &operator[](int i) const { return data_[i]; } auto begin() const { return data_.begin(); } auto end() const { return data_.end(); } int size() const { return N; } friend std::ostream &operator<<(std::ostream &s, const vector_dyn &a) { s << "{"; for (auto it = a.data_.begin(); it != a.data_.end(); ++it) { if (it != a.data_.begin()) s << ","; s << *it; } s << "}"; return s; } }; template <typename T, int &N> class square_matrix_dyn { public: using value_type = T; using vector_type = vector_dyn<T, N>; private: std::vector<vector_type> data_; public: square_matrix_dyn() : data_(N, vector_type()) {} square_matrix_dyn(const T &val) : data_(N, vector_type(val)) {} square_matrix_dyn(std::initializer_list<std::initializer_list<T>> list) : data_(N) { int i = 0; for (auto it = list.begin(); it != list.end(); ++it) { data_[i++] = vector_type(*it); } } square_matrix_dyn(const square_matrix_dyn &that) : data_(that.data_) {} square_matrix_dyn(const std::vector<std::vector<T>> &that) : data_(N) { for (int i = 0; i < N; ++i) data_[i] = that[i]; } bool operator==(const square_matrix_dyn &that) const { return data_ == that.data_; } bool operator!=(const square_matrix_dyn &that) const { return !(*this == that); } auto &operator=(const square_matrix_dyn &that) { data_ = that.data_; return *this; } auto &operator+=(const square_matrix_dyn &that) { for (int i = 0; i < N; ++i) data_[i] += that.data_[i]; return *this; } auto &operator-=(const square_matrix_dyn &that) { for (int i = 0; i < N; ++i) data_[i] -= that.data_[i]; return *this; } auto &operator*=(const square_matrix_dyn &that) { square_matrix_dyn ret; for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) for (int k = 0; k < N; ++k) ret[i][j] += data_[i][k] * that.data_[k][j]; return *this = ret; } const auto &operator[](int i) const { return data_[i]; } auto &operator[](int i) { return data_[i]; } int size() const { return N; } static auto unit() { square_matrix_dyn ret; for (int i = 0; i < N; ++i) ret[i][i] = 1; return ret; } auto operator+(const square_matrix_dyn &that) { return square_matrix_dyn(*this) += that; } auto operator-(const square_matrix_dyn &that) { return square_matrix_dyn(*this) -= that; } auto operator*(const square_matrix_dyn &that) { return square_matrix_dyn(*this) *= that; } auto pow(uint64_t p) const { auto ret = unit(); auto a = *this; while (p > 0) { if (p & 1) ret *= a; a *= a; p >>= 1; } return ret; } auto operator*(const vector_type &that) { vector_type ret; for (int i = 0; i < N; ++i) ret[i] = dot(data_[i], that); return ret; } }; } // namespace haar_lib #line 4 "Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod() { return M; } constexpr modint() : val_(0) {} constexpr modint(int64_t n) { if (n >= M) val_ = n % M; else if (n < 0) val_ = n % M + M; else val_ = n; } constexpr auto &operator=(const modint &a) { val_ = a.val_; return *this; } constexpr auto &operator+=(const modint &a) { if (val_ + a.val_ >= M) val_ = (uint64_t) val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto &operator-=(const modint &a) { if (val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto &operator*=(const modint &a) { val_ = (uint64_t) val_ * a.val_ % M; return *this; } constexpr auto &operator/=(const modint &a) { val_ = (uint64_t) val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const { return modint(*this) += a; } constexpr auto operator-(const modint &a) const { return modint(*this) -= a; } constexpr auto operator*(const modint &a) const { return modint(*this) *= a; } constexpr auto operator/(const modint &a) const { return modint(*this) /= a; } constexpr bool operator==(const modint &a) const { return val_ == a.val_; } constexpr bool operator!=(const modint &a) const { return val_ != a.val_; } constexpr auto &operator++() { *this += 1; return *this; } constexpr auto &operator--() { *this -= 1; return *this; } constexpr auto operator++(int) { auto t = *this; *this += 1; return t; } constexpr auto operator--(int) { auto t = *this; *this -= 1; return t; } constexpr static modint pow(int64_t n, int64_t p) { if (p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for (; p; (e *= e) %= M, p >>= 1) if (p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a) { int64_t b = M, u = 1, v = 0; while (b) { int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if (u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); } constexpr auto pow(int64_t p) const { return pow(val_, p); } constexpr auto inv() const { return inv(val_); } friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); } friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; } friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; } friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; } friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; } friend std::istream &operator>>(std::istream &s, modint &a) { s >> a.val_; return s; } friend std::ostream &operator<<(std::ostream &s, const modint &a) { s << a.val_; return s; } template <int N> static auto div() { static auto value = inv(N); return value; } explicit operator int32_t() const noexcept { return val_; } explicit operator int64_t() const noexcept { return val_; } }; } // namespace haar_lib #line 11 "test/yukicoder/194/main.test.cpp" namespace hl = haar_lib; using mint = hl::modint<1000000007>; static int N; using M = hl::square_matrix_dyn<mint, N>; std::pair<mint, mint> solve1(int64_t N, int64_t K, std::vector<int> A) { M m; for (int i = 0; i < N; ++i) m[0][i] = 1; for (int i = 0; i < N - 1; ++i) m[i + 1][i] = 1; std::reverse(A.begin(), A.end()); mint f = 0; { auto m2 = m.pow(K - N); for (int i = 0; i < N; ++i) f += m2[0][i] * A[i]; } mint s = std::accumulate(A.begin(), A.end(), mint(0)); { auto c = hl::inverse_matrix(M::unit() - m).value(); auto temp = (M::unit() - m.pow(K - N + 1)) * c - M::unit(); s += dot(temp[0], M::vector_type(A)); } return {f, s}; } std::pair<mint, mint> solve2(int64_t N, int64_t K, std::vector<int> A) { std::vector<mint> v(K); mint temp = 0; for (int i = 0; i < N; ++i) { temp += A[i]; v[i] = A[i]; } for (int i = N; i < K; ++i) { v[i] = temp; temp += v[i]; temp -= v[i - N]; } mint f = v.back(); mint s = std::accumulate(v.begin(), v.end(), mint(0)); return {f, s}; } int main() { int64_t K; std::cin >> N >> K; auto A = hl::input_vector<int>(N); auto [f, s] = K > 1000000 ? solve1(N, K, A) : solve2(N, K, A); std::cout << f << " " << s << "\n"; return 0; }