#define PROBLEM "https://yukicoder.me/problems/no/510" #include <iostream> #include <vector> #include "Mylib/AlgebraicStructure/Monoid/dual.cpp" #include "Mylib/AlgebraicStructure/Monoid/product_matrix.cpp" #include "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/LinearAlgebra/square_matrix_const_size.cpp" #include "Mylib/Number/Mint/mint.cpp" namespace hl = haar_lib; using mint = hl::modint<1000000007>; using Mat = hl::square_matrix_const<mint, 4>; using Monoid = hl::dual_monoid<hl::product_matrix_monoid<Mat>>; auto f(mint x, mint y) { Mat ret = { {1, 0, x, 0}, {0, y, 0, 1}, {0, 2 * y, y * y, 1}, {0, 0, 0, 1}}; return ret; } int main() { int n, q; std::cin >> n >> q; hl::segment_tree<Monoid> seg(n); std::vector<mint> x(n), y(n); for (int i = 0; i < n; ++i) { seg.set(i, f(x[i], y[i])); } for (auto [c, i] : hl::input_tuples<char, int>(q)) { if (c == 'x') { int v; std::cin >> v; x[i] = v; seg.set(i, f(x[i], y[i])); } else if (c == 'y') { int v; std::cin >> v; y[i] = v; seg.set(i, f(x[i], y[i])); } else { auto m = seg.fold(0, i); auto ans = dot(m[0], Mat::vector_type({1, 1, 1, 1})); std::cout << ans << "\n"; } } return 0; }
#line 1 "test/yukicoder/510/main.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/510" #include <iostream> #include <vector> #line 2 "Mylib/AlgebraicStructure/Monoid/dual.cpp" namespace haar_lib { template <typename Monoid> struct dual_monoid { using value_type = typename Monoid::value_type; const static Monoid M; value_type operator()() const { return M(); } value_type operator()(const value_type &a, const value_type &b) const { return M(b, a); } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/Monoid/product_matrix.cpp" namespace haar_lib { template <typename T> struct product_matrix_monoid { using value_type = T; value_type operator()() const { return T::unit(); } value_type operator()(const value_type &a, const value_type &b) const { return a * b; } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include <algorithm> #include <cassert> #include <functional> #line 6 "Mylib/DataStructure/SegmentTree/segment_tree.cpp" namespace haar_lib { template <typename Monoid> class segment_tree { public: using value_type = typename Monoid::value_type; private: Monoid M_; int depth_, size_, hsize_; std::vector<value_type> data_; public: segment_tree() {} segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_()) {} auto operator[](int i) const { assert(0 <= i and i < hsize_); return data_[hsize_ + i]; } auto fold(int l, int r) const { assert(0 <= l and l <= r and r <= hsize_); value_type ret_left = M_(); value_type ret_right = M_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) ret_right = M_(data_[--R], ret_right); if (L & 1) ret_left = M_(ret_left, data_[L++]); L >>= 1, R >>= 1; } return M_(ret_left, ret_right); } auto fold_all() const { return data_[1]; } void set(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = x; while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } void update(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = M_(data_[i], x); while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i]; for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init(const T &val) { init_with_vector(std::vector<value_type>(hsize_, val)); } private: template <bool Lower, typename F> int bound(const int l, const int r, value_type x, F f) const { std::vector<int> pl, pr; int L = l + hsize_; int R = r + hsize_; while (L < R) { if (R & 1) pr.push_back(--R); if (L & 1) pl.push_back(L++); L >>= 1, R >>= 1; } std::reverse(pr.begin(), pr.end()); pl.insert(pl.end(), pr.begin(), pr.end()); value_type a = M_(); for (int i : pl) { auto b = M_(a, data_[i]); if ((Lower and not f(b, x)) or (not Lower and f(x, b))) { while (i < hsize_) { const auto c = M_(a, data_[i << 1 | 0]); if ((Lower and not f(c, x)) or (not Lower and f(x, c))) { i = i << 1 | 0; } else { a = c; i = i << 1 | 1; } } return i - hsize_; } a = b; } return r; } public: template <typename F = std::less<value_type>> int lower_bound(int l, int r, value_type x, F f = F()) const { return bound<true>(l, r, x, f); } template <typename F = std::less<value_type>> int upper_bound(int l, int r, value_type x, F f = F()) const { return bound<false>(l, r, x, f); } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #include <utility> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 2 "Mylib/LinearAlgebra/square_matrix_const_size.cpp" #include <array> #line 6 "Mylib/LinearAlgebra/square_matrix_const_size.cpp" namespace haar_lib { template <typename T, int N> class vector_const { public: using value_type = T; private: std::array<T, N> data_; public: vector_const() { data_.fill(0); } vector_const(T value) { data_.fill(value); } vector_const(std::initializer_list<T> list) { int i = 0; for (auto it = list.begin(); it != list.end(); ++it) data_[i++] = *it; } vector_const(const vector_const &that) : data_(that.data_) {} bool operator==(const vector_const &that) { return data_ == that.data_; } bool operator!=(const vector_const &that) { return !(*this == that); } auto &operator=(const vector_const &that) { data_ = that.data_; return *this; } auto &operator+=(const vector_const &that) { for (int i = 0; i < N; ++i) data_[i] += that.data_[i]; return *this; } auto &operator-=(const vector_const &that) { for (int i = 0; i < N; ++i) data_[i] -= that.data_[i]; return *this; } friend auto dot(const vector_const &a, const vector_const &b) { T ret = 0; for (int i = 0; i < N; ++i) ret += a.data_[i] * b.data_[i]; return ret; } auto operator+(const vector_const &that) const { return vector_const(*this) += that; } auto operator-(const vector_const &that) const { return vector_const(*this) -= that; } auto &operator[](int i) { return data_[i]; } const auto &operator[](int i) const { return data_[i]; } auto begin() const { return data_.begin(); } auto end() const { return data_.end(); } int size() const { return N; } friend std::ostream &operator<<(std::ostream &s, const vector_const &a) { s << "{"; for (auto it = a.data_.begin(); it != a.data_.end(); ++it) { if (it != a.data_.begin()) s << ","; s << *it; } s << "}"; return s; } }; template <typename T, int N> class square_matrix_const { public: using value_type = T; using vector_type = vector_const<T, N>; private: std::array<vector_type, N> data_; public: square_matrix_const() { for (int i = 0; i < N; ++i) data_[i] = vector_type(); } square_matrix_const(const T &val) { for (int i = 0; i < N; ++i) data_[i] = vector_type(val); } square_matrix_const(std::initializer_list<std::initializer_list<T>> list) { int i = 0; for (auto it = list.begin(); it != list.end(); ++it) { data_[i++] = vector_type(*it); } } square_matrix_const(const square_matrix_const &that) : data_(that.data_) {} bool operator==(const square_matrix_const &that) const { return data_ == that.data_; } bool operator!=(const square_matrix_const &that) const { return !(*this == that); } auto &operator=(const square_matrix_const &that) { data_ = that.data_; return *this; } auto &operator+=(const square_matrix_const &that) { for (int i = 0; i < N; ++i) data_[i] += that.data_[i]; return *this; } auto &operator-=(const square_matrix_const &that) { for (int i = 0; i < N; ++i) data_[i] -= that.data_[i]; return *this; } auto &operator*=(const square_matrix_const &that) { square_matrix_const ret; for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) for (int k = 0; k < N; ++k) ret[i][j] += data_[i][k] * that.data_[k][j]; return *this = ret; } const auto &operator[](int i) const { return data_[i]; } auto &operator[](int i) { return data_[i]; } int size() const { return N; } static auto unit() { square_matrix_const ret; for (int i = 0; i < N; ++i) ret[i][i] = 1; return ret; } auto operator+(const square_matrix_const &that) const { return square_matrix_const(*this) += that; } auto operator-(const square_matrix_const &that) const { return square_matrix_const(*this) -= that; } auto operator*(const square_matrix_const &that) const { return square_matrix_const(*this) *= that; } auto pow(uint64_t p) const { auto ret = unit(); auto a = *this; while (p > 0) { if (p & 1) ret *= a; a *= a; p >>= 1; } return ret; } auto operator*(const vector_type &that) const { vector_type ret; for (int i = 0; i < N; ++i) ret[i] = dot(data_[i], that); return ret; } }; } // namespace haar_lib #line 4 "Mylib/Number/Mint/mint.cpp" namespace haar_lib { template <int32_t M> class modint { uint32_t val_; public: constexpr static auto mod() { return M; } constexpr modint() : val_(0) {} constexpr modint(int64_t n) { if (n >= M) val_ = n % M; else if (n < 0) val_ = n % M + M; else val_ = n; } constexpr auto &operator=(const modint &a) { val_ = a.val_; return *this; } constexpr auto &operator+=(const modint &a) { if (val_ + a.val_ >= M) val_ = (uint64_t) val_ + a.val_ - M; else val_ += a.val_; return *this; } constexpr auto &operator-=(const modint &a) { if (val_ < a.val_) val_ += M; val_ -= a.val_; return *this; } constexpr auto &operator*=(const modint &a) { val_ = (uint64_t) val_ * a.val_ % M; return *this; } constexpr auto &operator/=(const modint &a) { val_ = (uint64_t) val_ * a.inv().val_ % M; return *this; } constexpr auto operator+(const modint &a) const { return modint(*this) += a; } constexpr auto operator-(const modint &a) const { return modint(*this) -= a; } constexpr auto operator*(const modint &a) const { return modint(*this) *= a; } constexpr auto operator/(const modint &a) const { return modint(*this) /= a; } constexpr bool operator==(const modint &a) const { return val_ == a.val_; } constexpr bool operator!=(const modint &a) const { return val_ != a.val_; } constexpr auto &operator++() { *this += 1; return *this; } constexpr auto &operator--() { *this -= 1; return *this; } constexpr auto operator++(int) { auto t = *this; *this += 1; return t; } constexpr auto operator--(int) { auto t = *this; *this -= 1; return t; } constexpr static modint pow(int64_t n, int64_t p) { if (p < 0) return pow(n, -p).inv(); int64_t ret = 1, e = n % M; for (; p; (e *= e) %= M, p >>= 1) if (p & 1) (ret *= e) %= M; return ret; } constexpr static modint inv(int64_t a) { int64_t b = M, u = 1, v = 0; while (b) { int64_t t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= M; if (u < 0) u += M; return u; } constexpr static auto frac(int64_t a, int64_t b) { return modint(a) / modint(b); } constexpr auto pow(int64_t p) const { return pow(val_, p); } constexpr auto inv() const { return inv(val_); } friend constexpr auto operator-(const modint &a) { return modint(M - a.val_); } friend constexpr auto operator+(int64_t a, const modint &b) { return modint(a) + b; } friend constexpr auto operator-(int64_t a, const modint &b) { return modint(a) - b; } friend constexpr auto operator*(int64_t a, const modint &b) { return modint(a) * b; } friend constexpr auto operator/(int64_t a, const modint &b) { return modint(a) / b; } friend std::istream &operator>>(std::istream &s, modint &a) { s >> a.val_; return s; } friend std::ostream &operator<<(std::ostream &s, const modint &a) { s << a.val_; return s; } template <int N> static auto div() { static auto value = inv(N); return value; } explicit operator int32_t() const noexcept { return val_; } explicit operator int64_t() const noexcept { return val_; } }; } // namespace haar_lib #line 11 "test/yukicoder/510/main.test.cpp" namespace hl = haar_lib; using mint = hl::modint<1000000007>; using Mat = hl::square_matrix_const<mint, 4>; using Monoid = hl::dual_monoid<hl::product_matrix_monoid<Mat>>; auto f(mint x, mint y) { Mat ret = { {1, 0, x, 0}, {0, y, 0, 1}, {0, 2 * y, y * y, 1}, {0, 0, 0, 1}}; return ret; } int main() { int n, q; std::cin >> n >> q; hl::segment_tree<Monoid> seg(n); std::vector<mint> x(n), y(n); for (int i = 0; i < n; ++i) { seg.set(i, f(x[i], y[i])); } for (auto [c, i] : hl::input_tuples<char, int>(q)) { if (c == 'x') { int v; std::cin >> v; x[i] = v; seg.set(i, f(x[i], y[i])); } else if (c == 'y') { int v; std::cin >> v; y[i] = v; seg.set(i, f(x[i], y[i])); } else { auto m = seg.fold(0, i); auto ans = dot(m[0], Mat::vector_type({1, 1, 1, 1})); std::cout << ans << "\n"; } } return 0; }