#define PROBLEM "https://yukicoder.me/problems/no/776" #include <algorithm> #include <climits> #include <iostream> #include <string> #include <vector> #include "Mylib/AlgebraicStructure/Monoid/max_partial_sum.cpp" #include "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/IO/input_vector.cpp" namespace hl = haar_lib; using M = hl::max_partial_sum_monoid<int64_t>; int main() { int N, Q; std::cin >> N >> Q; hl::segment_tree<M> seg(N); auto a = hl::input_vector<int64_t>(N); for (int i = 0; i < N; ++i) { seg.set(i, M::max_partial_sum(a[i])); } for (auto [type] : hl::input_tuples<std::string>(Q)) { if (type == "set") { int i, x; std::cin >> i >> x; --i; seg.set(i, M::max_partial_sum(x)); a[i] = x; } else { int l1, l2, r1, r2; std::cin >> l1 >> l2 >> r1 >> r2; --l1, --l2, --r1, --r2; r1 = std::max(l1, r1); l2 = std::min(l2, r2); int64_t ans = LLONG_MIN; auto f = [&](int L1, int L2, int R1, int R2) { auto ret = seg.fold(L1, L2 + 1).value_or(M::max_partial_sum(0)).right_max + seg.fold(std::min(L2 + 1, R1), R1).value_or(M::max_partial_sum(0)).sum + seg.fold(R1, R2 + 1).value_or(M::max_partial_sum(0)).left_max; if (L2 == R1) ret -= a[L2]; return ret; }; if (l2 <= r1) { ans = f(l1, l2, r1, r2); } else { if (l1 <= r1) ans = std::max(ans, f(l1, r1, r1, r2)); if (l2 <= r2) ans = std::max(ans, f(l1, l2, l2, r2)); if (r1 <= l2) ans = std::max(ans, seg.fold(r1, l2 + 1)->partial_max); } std::cout << ans << "\n"; } } return 0; }
#line 1 "test/yukicoder/776/main.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/776" #include <algorithm> #include <climits> #include <iostream> #include <string> #include <vector> #line 4 "Mylib/AlgebraicStructure/Monoid/max_partial_sum.cpp" #include <optional> namespace haar_lib { namespace max_partial_sum_monoid_impl { template <typename T> struct max_partial_sum { T sum, left_max, right_max, partial_max; max_partial_sum() {} max_partial_sum(T x) : sum(x), left_max(x), right_max(x), partial_max(x) {} max_partial_sum(T sum, T left_max, T right_max, T partial_max) : sum(sum), left_max(left_max), right_max(right_max), partial_max(partial_max) {} friend std::ostream &operator<<(std::ostream &s, const max_partial_sum &a) { s << "(" << "sum: " << a.sum << ", " << "left_max: " << a.left_max << ", " << "right_max: " << a.right_max << ", " << "partial_max: " << a.partial_max << ")"; return s; } }; } // namespace max_partial_sum_monoid_impl template <typename T> struct max_partial_sum_monoid { using max_partial_sum = max_partial_sum_monoid_impl::max_partial_sum<T>; using value_type = std::optional<max_partial_sum>; value_type operator()() const { return std::nullopt; } value_type operator()(const value_type &a, const value_type &b) const { if (not a) return b; if (not b) return a; return max_partial_sum( a->sum + b->sum, std::max(a->left_max, a->sum + std::max(b->left_max, b->sum)), std::max(b->right_max, b->sum + std::max(a->right_max, a->sum)), std::max({a->partial_max, b->partial_max, a->right_max + b->left_max})); } }; } // namespace haar_lib #line 3 "Mylib/DataStructure/SegmentTree/segment_tree.cpp" #include <cassert> #include <functional> #line 6 "Mylib/DataStructure/SegmentTree/segment_tree.cpp" namespace haar_lib { template <typename Monoid> class segment_tree { public: using value_type = typename Monoid::value_type; private: Monoid M_; int depth_, size_, hsize_; std::vector<value_type> data_; public: segment_tree() {} segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_()) {} auto operator[](int i) const { assert(0 <= i and i < hsize_); return data_[hsize_ + i]; } auto fold(int l, int r) const { assert(0 <= l and l <= r and r <= hsize_); value_type ret_left = M_(); value_type ret_right = M_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) ret_right = M_(data_[--R], ret_right); if (L & 1) ret_left = M_(ret_left, data_[L++]); L >>= 1, R >>= 1; } return M_(ret_left, ret_right); } auto fold_all() const { return data_[1]; } void set(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = x; while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } void update(int i, const value_type &x) { assert(0 <= i and i < hsize_); i += hsize_; data_[i] = M_(data_[i], x); while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i]; for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]); } template <typename T> void init(const T &val) { init_with_vector(std::vector<value_type>(hsize_, val)); } private: template <bool Lower, typename F> int bound(const int l, const int r, value_type x, F f) const { std::vector<int> pl, pr; int L = l + hsize_; int R = r + hsize_; while (L < R) { if (R & 1) pr.push_back(--R); if (L & 1) pl.push_back(L++); L >>= 1, R >>= 1; } std::reverse(pr.begin(), pr.end()); pl.insert(pl.end(), pr.begin(), pr.end()); value_type a = M_(); for (int i : pl) { auto b = M_(a, data_[i]); if ((Lower and not f(b, x)) or (not Lower and f(x, b))) { while (i < hsize_) { const auto c = M_(a, data_[i << 1 | 0]); if ((Lower and not f(c, x)) or (not Lower and f(x, c))) { i = i << 1 | 0; } else { a = c; i = i << 1 | 1; } } return i - hsize_; } a = b; } return r; } public: template <typename F = std::less<value_type>> int lower_bound(int l, int r, value_type x, F f = F()) const { return bound<true>(l, r, x, f); } template <typename F = std::less<value_type>> int upper_bound(int l, int r, value_type x, F f = F()) const { return bound<false>(l, r, x, f); } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #include <utility> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 4 "Mylib/IO/input_vector.cpp" namespace haar_lib { template <typename T> std::vector<T> input_vector(int N) { std::vector<T> ret(N); for (int i = 0; i < N; ++i) std::cin >> ret[i]; return ret; } template <typename T> std::vector<std::vector<T>> input_vector(int N, int M) { std::vector<std::vector<T>> ret(N); for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M); return ret; } } // namespace haar_lib #line 12 "test/yukicoder/776/main.test.cpp" namespace hl = haar_lib; using M = hl::max_partial_sum_monoid<int64_t>; int main() { int N, Q; std::cin >> N >> Q; hl::segment_tree<M> seg(N); auto a = hl::input_vector<int64_t>(N); for (int i = 0; i < N; ++i) { seg.set(i, M::max_partial_sum(a[i])); } for (auto [type] : hl::input_tuples<std::string>(Q)) { if (type == "set") { int i, x; std::cin >> i >> x; --i; seg.set(i, M::max_partial_sum(x)); a[i] = x; } else { int l1, l2, r1, r2; std::cin >> l1 >> l2 >> r1 >> r2; --l1, --l2, --r1, --r2; r1 = std::max(l1, r1); l2 = std::min(l2, r2); int64_t ans = LLONG_MIN; auto f = [&](int L1, int L2, int R1, int R2) { auto ret = seg.fold(L1, L2 + 1).value_or(M::max_partial_sum(0)).right_max + seg.fold(std::min(L2 + 1, R1), R1).value_or(M::max_partial_sum(0)).sum + seg.fold(R1, R2 + 1).value_or(M::max_partial_sum(0)).left_max; if (L2 == R1) ret -= a[L2]; return ret; }; if (l2 <= r1) { ans = f(l1, l2, r1, r2); } else { if (l1 <= r1) ans = std::max(ans, f(l1, r1, r1, r2)); if (l2 <= r2) ans = std::max(ans, f(l1, l2, l2, r2)); if (r1 <= l2) ans = std::max(ans, seg.fold(r1, l2 + 1)->partial_max); } std::cout << ans << "\n"; } } return 0; }