#define PROBLEM "https://yukicoder.me/problems/no/776"
#include <algorithm>
#include <climits>
#include <iostream>
#include <string>
#include <vector>
#include "Mylib/AlgebraicStructure/Monoid/max_partial_sum.cpp"
#include "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/IO/input_vector.cpp"
namespace hl = haar_lib;
using M = hl::max_partial_sum_monoid<int64_t>;
int main() {
int N, Q;
std::cin >> N >> Q;
hl::segment_tree<M> seg(N);
auto a = hl::input_vector<int64_t>(N);
for (int i = 0; i < N; ++i) {
seg.set(i, M::max_partial_sum(a[i]));
}
for (auto [type] : hl::input_tuples<std::string>(Q)) {
if (type == "set") {
int i, x;
std::cin >> i >> x;
--i;
seg.set(i, M::max_partial_sum(x));
a[i] = x;
} else {
int l1, l2, r1, r2;
std::cin >> l1 >> l2 >> r1 >> r2;
--l1, --l2, --r1, --r2;
r1 = std::max(l1, r1);
l2 = std::min(l2, r2);
int64_t ans = LLONG_MIN;
auto f =
[&](int L1, int L2, int R1, int R2) {
auto ret =
seg.fold(L1, L2 + 1).value_or(M::max_partial_sum(0)).right_max +
seg.fold(std::min(L2 + 1, R1), R1).value_or(M::max_partial_sum(0)).sum +
seg.fold(R1, R2 + 1).value_or(M::max_partial_sum(0)).left_max;
if (L2 == R1) ret -= a[L2];
return ret;
};
if (l2 <= r1) {
ans = f(l1, l2, r1, r2);
} else {
if (l1 <= r1) ans = std::max(ans, f(l1, r1, r1, r2));
if (l2 <= r2) ans = std::max(ans, f(l1, l2, l2, r2));
if (r1 <= l2) ans = std::max(ans, seg.fold(r1, l2 + 1)->partial_max);
}
std::cout << ans << "\n";
}
}
return 0;
}
#line 1 "test/yukicoder/776/main.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/776"
#include <algorithm>
#include <climits>
#include <iostream>
#include <string>
#include <vector>
#line 4 "Mylib/AlgebraicStructure/Monoid/max_partial_sum.cpp"
#include <optional>
namespace haar_lib {
namespace max_partial_sum_monoid_impl {
template <typename T>
struct max_partial_sum {
T sum, left_max, right_max, partial_max;
max_partial_sum() {}
max_partial_sum(T x) : sum(x), left_max(x), right_max(x), partial_max(x) {}
max_partial_sum(T sum, T left_max, T right_max, T partial_max) : sum(sum), left_max(left_max), right_max(right_max), partial_max(partial_max) {}
friend std::ostream &operator<<(std::ostream &s, const max_partial_sum &a) {
s << "("
<< "sum: " << a.sum << ", "
<< "left_max: " << a.left_max << ", "
<< "right_max: " << a.right_max << ", "
<< "partial_max: " << a.partial_max << ")";
return s;
}
};
} // namespace max_partial_sum_monoid_impl
template <typename T>
struct max_partial_sum_monoid {
using max_partial_sum = max_partial_sum_monoid_impl::max_partial_sum<T>;
using value_type = std::optional<max_partial_sum>;
value_type operator()() const {
return std::nullopt;
}
value_type operator()(const value_type &a, const value_type &b) const {
if (not a) return b;
if (not b) return a;
return max_partial_sum(
a->sum + b->sum,
std::max(a->left_max, a->sum + std::max(b->left_max, b->sum)),
std::max(b->right_max, b->sum + std::max(a->right_max, a->sum)),
std::max({a->partial_max, b->partial_max, a->right_max + b->left_max}));
}
};
} // namespace haar_lib
#line 3 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
#include <cassert>
#include <functional>
#line 6 "Mylib/DataStructure/SegmentTree/segment_tree.cpp"
namespace haar_lib {
template <typename Monoid>
class segment_tree {
public:
using value_type = typename Monoid::value_type;
private:
Monoid M_;
int depth_, size_, hsize_;
std::vector<value_type> data_;
public:
segment_tree() {}
segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
size_(1 << depth_),
hsize_(size_ / 2),
data_(size_, M_()) {}
auto operator[](int i) const {
assert(0 <= i and i < hsize_);
return data_[hsize_ + i];
}
auto fold(int l, int r) const {
assert(0 <= l and l <= r and r <= hsize_);
value_type ret_left = M_();
value_type ret_right = M_();
int L = l + hsize_, R = r + hsize_;
while (L < R) {
if (R & 1) ret_right = M_(data_[--R], ret_right);
if (L & 1) ret_left = M_(ret_left, data_[L++]);
L >>= 1, R >>= 1;
}
return M_(ret_left, ret_right);
}
auto fold_all() const {
return data_[1];
}
void set(int i, const value_type &x) {
assert(0 <= i and i < hsize_);
i += hsize_;
data_[i] = x;
while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
void update(int i, const value_type &x) {
assert(0 <= i and i < hsize_);
i += hsize_;
data_[i] = M_(data_[i], x);
while (i > 1) i >>= 1, data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
template <typename T>
void init_with_vector(const std::vector<T> &val) {
data_.assign(size_, M_());
for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = val[i];
for (int i = hsize_; --i >= 1;) data_[i] = M_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
template <typename T>
void init(const T &val) {
init_with_vector(std::vector<value_type>(hsize_, val));
}
private:
template <bool Lower, typename F>
int bound(const int l, const int r, value_type x, F f) const {
std::vector<int> pl, pr;
int L = l + hsize_;
int R = r + hsize_;
while (L < R) {
if (R & 1) pr.push_back(--R);
if (L & 1) pl.push_back(L++);
L >>= 1, R >>= 1;
}
std::reverse(pr.begin(), pr.end());
pl.insert(pl.end(), pr.begin(), pr.end());
value_type a = M_();
for (int i : pl) {
auto b = M_(a, data_[i]);
if ((Lower and not f(b, x)) or (not Lower and f(x, b))) {
while (i < hsize_) {
const auto c = M_(a, data_[i << 1 | 0]);
if ((Lower and not f(c, x)) or (not Lower and f(x, c))) {
i = i << 1 | 0;
} else {
a = c;
i = i << 1 | 1;
}
}
return i - hsize_;
}
a = b;
}
return r;
}
public:
template <typename F = std::less<value_type>>
int lower_bound(int l, int r, value_type x, F f = F()) const {
return bound<true>(l, r, x, f);
}
template <typename F = std::less<value_type>>
int upper_bound(int l, int r, value_type x, F f = F()) const {
return bound<false>(l, r, x, f);
}
};
} // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#include <utility>
#line 6 "Mylib/IO/input_tuple.cpp"
namespace haar_lib {
template <typename T, size_t... I>
static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
(void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
}
template <typename T, typename U>
std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
s >> value.first >> value.second;
return s;
}
template <typename... Args>
std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
return s;
}
} // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"
namespace haar_lib {
template <typename... Args>
class InputTuples {
struct iter {
using value_type = std::tuple<Args...>;
value_type value;
bool fetched = false;
int N, c = 0;
value_type operator*() {
if (not fetched) {
std::cin >> value;
}
return value;
}
void operator++() {
++c;
fetched = false;
}
bool operator!=(iter &) const {
return c < N;
}
iter(int N) : N(N) {}
};
int N;
public:
InputTuples(int N) : N(N) {}
iter begin() const { return iter(N); }
iter end() const { return iter(N); }
};
template <typename... Args>
auto input_tuples(int N) {
return InputTuples<Args...>(N);
}
} // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"
namespace haar_lib {
template <typename T>
std::vector<T> input_vector(int N) {
std::vector<T> ret(N);
for (int i = 0; i < N; ++i) std::cin >> ret[i];
return ret;
}
template <typename T>
std::vector<std::vector<T>> input_vector(int N, int M) {
std::vector<std::vector<T>> ret(N);
for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
return ret;
}
} // namespace haar_lib
#line 12 "test/yukicoder/776/main.test.cpp"
namespace hl = haar_lib;
using M = hl::max_partial_sum_monoid<int64_t>;
int main() {
int N, Q;
std::cin >> N >> Q;
hl::segment_tree<M> seg(N);
auto a = hl::input_vector<int64_t>(N);
for (int i = 0; i < N; ++i) {
seg.set(i, M::max_partial_sum(a[i]));
}
for (auto [type] : hl::input_tuples<std::string>(Q)) {
if (type == "set") {
int i, x;
std::cin >> i >> x;
--i;
seg.set(i, M::max_partial_sum(x));
a[i] = x;
} else {
int l1, l2, r1, r2;
std::cin >> l1 >> l2 >> r1 >> r2;
--l1, --l2, --r1, --r2;
r1 = std::max(l1, r1);
l2 = std::min(l2, r2);
int64_t ans = LLONG_MIN;
auto f =
[&](int L1, int L2, int R1, int R2) {
auto ret =
seg.fold(L1, L2 + 1).value_or(M::max_partial_sum(0)).right_max +
seg.fold(std::min(L2 + 1, R1), R1).value_or(M::max_partial_sum(0)).sum +
seg.fold(R1, R2 + 1).value_or(M::max_partial_sum(0)).left_max;
if (L2 == R1) ret -= a[L2];
return ret;
};
if (l2 <= r1) {
ans = f(l1, l2, r1, r2);
} else {
if (l1 <= r1) ans = std::max(ans, f(l1, r1, r1, r2));
if (l2 <= r2) ans = std::max(ans, f(l1, l2, l2, r2));
if (r1 <= l2) ans = std::max(ans, seg.fold(r1, l2 + 1)->partial_max);
}
std::cout << ans << "\n";
}
}
return 0;
}