#define PROBLEM "https://yukicoder.me/problems/no/922" #include <iostream> #include <utility> #include <vector> #include "Mylib/Graph/Template/graph.cpp" #include "Mylib/Graph/TreeUtils/forest.cpp" #include "Mylib/Graph/TreeUtils/lca_doubling.cpp" #include "Mylib/Graph/TreeUtils/rerooting.cpp" #include "Mylib/Graph/TreeUtils/tree_distance.cpp" #include "Mylib/IO/input_tuples.cpp" namespace hl = haar_lib; int main() { int N, M, Q; std::cin >> N >> M >> Q; hl::graph<int64_t> g(N); g.read<1, false, false>(M); int64_t ans = 0; hl::forest<int64_t> forest(g); const int tree_num = forest.trees().size(); std::vector<hl::lowest_common_ancestor_doubling<int64_t>> lcas(tree_num); std::vector<std::vector<int64_t>> dists(tree_num); for (int i = 0; i < tree_num; ++i) { lcas[i] = hl::lowest_common_ancestor_doubling(forest.trees()[i], 0); dists[i] = hl::tree_distance(forest.trees()[i], 0); } std::vector<std::vector<int>> plans(tree_num); for (int i = 0; i < tree_num; ++i) { plans[i] = std::vector<int>(forest.trees()[i].size()); } for (auto [a, b] : hl::input_tuples<int, int>(Q)) { --a, --b; if (forest.in_same_tree(a, b)) { ans += lcas[forest.tree_id(a)].distance(forest.vertex_id(a), forest.vertex_id(b), dists[forest.tree_id(a)]); } else { plans[forest.tree_id(a)][forest.vertex_id(a)] += 1; plans[forest.tree_id(b)][forest.vertex_id(b)] += 1; } } for (int i = 0; i < tree_num; ++i) { const auto &tree = forest.trees()[i]; const auto &plan = plans[i]; auto res = hl::rerooting<std::pair<int, int>>( tree, std::make_pair(0, 0), [](const auto &a, const auto &b) { return std::make_pair(a.first + b.first, a.second + b.second); }, [](const auto &x, const auto &e) { return std::make_pair(x.first, x.second + x.first); }, [&](const auto &x, int v) { return std::make_pair(x.first + plan[v], x.second); }); ans += std::min_element( res.begin(), res.end(), [](const auto &a, const auto &b) { return a.second < b.second; }) ->second; } std::cout << ans << std::endl; return 0; }
#line 1 "test/yukicoder/922/main.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/922" #include <iostream> #include <utility> #include <vector> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 2 "Mylib/Graph/TreeUtils/forest.cpp" #include <algorithm> #line 6 "Mylib/Graph/TreeUtils/forest.cpp" namespace haar_lib { template <typename T> class forest { std::vector<tree<T>> trees_; std::vector<int> tree_id_, vertex_id_; std::vector<std::vector<int>> rid_; public: forest() {} forest(const graph<T> &g) { const int N = g.size(); tree_id_.resize(N); vertex_id_.resize(N); std::vector<bool> check(N); auto dfs = [&](auto &dfs, int cur, std::vector<int> &vertices, std::vector<edge<T>> &edges) -> void { check[cur] = true; vertices.push_back(cur); for (auto &e : g[cur]) { edges.push_back(e); if (not check[e.to]) { dfs(dfs, e.to, vertices, edges); } } }; for (int i = 0; i < N; ++i) { if (not check[i]) { std::vector<int> vertices; std::vector<edge<T>> edges; dfs(dfs, i, vertices, edges); const int m = vertices.size(); const int k = trees_.size(); rid_.emplace_back(m); for (int i = 0; i < (int) vertices.size(); ++i) { tree_id_[vertices[i]] = k; vertex_id_[vertices[i]] = i; rid_[k][i] = vertices[i]; } trees_.push_back(m); for (auto &e : edges) { trees_[k].add_edge(vertex_id_[e.from], vertex_id_[e.to], e.cost); } } } } const auto &trees() const { return trees_; } auto id(int i) const { return std::make_pair(tree_id_[i], vertex_id_[i]); } int tree_id(int i) const { return tree_id_[i]; } int vertex_id(int i) const { return vertex_id_[i]; } int rid(int t, int u) const { return rid_[t][u]; } bool in_same_tree(int i, int j) const { return tree_id_[i] == tree_id_[j]; } }; } // namespace haar_lib #line 2 "Mylib/Graph/TreeUtils/lca_doubling.cpp" #include <cmath> #line 5 "Mylib/Graph/TreeUtils/lca_doubling.cpp" namespace haar_lib { template <typename T> class lowest_common_ancestor_doubling { int n_, log2n_; std::vector<std::vector<int>> parent_; std::vector<int> depth_; void dfs(const tree<T> &tr, int cur, int par, int d) { parent_[cur][0] = par; depth_[cur] = d; for (auto &e : tr[cur]) { if (e.to != par) { dfs(tr, e.to, cur, d + 1); } } } public: lowest_common_ancestor_doubling() {} lowest_common_ancestor_doubling(const tree<T> &tr, int root) : n_(tr.size()), log2n_((int) ceil(log2(n_)) + 1), parent_(n_, std::vector<int>(log2n_)), depth_(n_) { dfs(tr, root, -1, 0); for (int k = 0; k < log2n_ - 1; ++k) { for (int v = 0; v < n_; ++v) { if (parent_[v][k] == -1) parent_[v][k + 1] = -1; else parent_[v][k + 1] = parent_[parent_[v][k]][k]; } } } int lca(int a, int b) const { if (depth_[a] >= depth_[b]) std::swap(a, b); for (int k = 0; k < log2n_; ++k) { if ((depth_[b] - depth_[a]) >> k & 1) b = parent_[b][k]; } if (a == b) return a; for (int k = log2n_; --k >= 0;) { if (parent_[a][k] != parent_[b][k]) { a = parent_[a][k]; b = parent_[b][k]; } } return parent_[a][0]; } int operator()(int a, int b) const { return lca(a, b); } T distance(int u, int v, const std::vector<T> &dist) const { return dist[u] + dist[v] - 2 * dist[lca(u, v)]; } }; } // namespace haar_lib #line 4 "Mylib/Graph/TreeUtils/rerooting.cpp" namespace haar_lib { namespace rerooting_impl { template <typename T, typename U, typename Merge, typename EdgeF, typename VertexF> T rec1( tree<U> &tr, T id, const Merge &merge, const EdgeF &f, const VertexF &g, std::vector<std::vector<T>> &dp, int cur, int par = -1) { T acc = id; for (int i = 0; i < (int) tr[cur].size(); ++i) { auto &e = tr[cur][i]; if (e.to == par) continue; dp[cur][i] = rec1(tr, id, merge, f, g, dp, e.to, cur); acc = merge(acc, f(dp[cur][i], e)); } return g(acc, cur); } template <typename T, typename U, typename Merge, typename EdgeF, typename VertexF> void rec2( const tree<U> &tr, T id, const Merge &merge, const EdgeF &f, const VertexF &g, std::vector<std::vector<T>> &dp, int cur, int par, T value) { const int l = tr[cur].size(); for (int i = 0; i < l; ++i) { if (tr[cur][i].to == par) { dp[cur][i] = value; } } std::vector<T> left(l + 1, id), right(l + 1, id); for (int i = 0; i < l - 1; ++i) { const auto &e = tr[cur][i]; left[i + 1] = merge(left[i], f(dp[cur][i], e)); } for (int i = l - 1; i >= 1; --i) { const auto &e = tr[cur][i]; right[i - 1] = merge(right[i], f(dp[cur][i], e)); } for (int i = 0; i < l; ++i) { const auto &e = tr[cur][i]; if (e.to == par) continue; rec2(tr, id, merge, f, g, dp, e.to, cur, g(merge(left[i], right[i]), cur)); } } } // namespace rerooting_impl template <typename T, typename U, typename Merge, typename EdgeF, typename VertexF> auto rerooting(tree<U> tr, T id, Merge merge, EdgeF f, VertexF g) { const int N = tr.size(); std::vector<std::vector<T>> dp(N); std::vector<T> ret(N, id); for (int i = 0; i < N; ++i) dp[i].assign(tr[i].size(), id); rerooting_impl::rec1(tr, id, merge, f, g, dp, 0); rerooting_impl::rec2(tr, id, merge, f, g, dp, 0, -1, id); for (int i = 0; i < N; ++i) { for (int j = 0; j < (int) tr[i].size(); ++j) { ret[i] = merge(ret[i], f(dp[i][j], tr[i][j])); } ret[i] = g(ret[i], i); } return ret; } } // namespace haar_lib #line 2 "Mylib/Graph/TreeUtils/tree_distance.cpp" #include <stack> #line 5 "Mylib/Graph/TreeUtils/tree_distance.cpp" namespace haar_lib { template <typename T> std::vector<T> tree_distance(const tree<T> &tr, int root) { const int n = tr.size(); std::vector<T> ret(n); std::vector<bool> visited(n); std::stack<int> st; st.push(root); ret[root] = 0; while (not st.empty()) { int cur = st.top(); st.pop(); visited[cur] = true; for (auto &e : tr[cur]) { if (not visited[e.to]) { ret[e.to] = ret[cur] + e.cost; st.push(e.to); } } } return ret; } } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 12 "test/yukicoder/922/main.test.cpp" namespace hl = haar_lib; int main() { int N, M, Q; std::cin >> N >> M >> Q; hl::graph<int64_t> g(N); g.read<1, false, false>(M); int64_t ans = 0; hl::forest<int64_t> forest(g); const int tree_num = forest.trees().size(); std::vector<hl::lowest_common_ancestor_doubling<int64_t>> lcas(tree_num); std::vector<std::vector<int64_t>> dists(tree_num); for (int i = 0; i < tree_num; ++i) { lcas[i] = hl::lowest_common_ancestor_doubling(forest.trees()[i], 0); dists[i] = hl::tree_distance(forest.trees()[i], 0); } std::vector<std::vector<int>> plans(tree_num); for (int i = 0; i < tree_num; ++i) { plans[i] = std::vector<int>(forest.trees()[i].size()); } for (auto [a, b] : hl::input_tuples<int, int>(Q)) { --a, --b; if (forest.in_same_tree(a, b)) { ans += lcas[forest.tree_id(a)].distance(forest.vertex_id(a), forest.vertex_id(b), dists[forest.tree_id(a)]); } else { plans[forest.tree_id(a)][forest.vertex_id(a)] += 1; plans[forest.tree_id(b)][forest.vertex_id(b)] += 1; } } for (int i = 0; i < tree_num; ++i) { const auto &tree = forest.trees()[i]; const auto &plan = plans[i]; auto res = hl::rerooting<std::pair<int, int>>( tree, std::make_pair(0, 0), [](const auto &a, const auto &b) { return std::make_pair(a.first + b.first, a.second + b.second); }, [](const auto &x, const auto &e) { return std::make_pair(x.first, x.second + x.first); }, [&](const auto &x, int v) { return std::make_pair(x.first + plan[v], x.second); }); ans += std::min_element( res.begin(), res.end(), [](const auto &a, const auto &b) { return a.second < b.second; }) ->second; } std::cout << ans << std::endl; return 0; }