Persistent segment tree
(Mylib/DataStructure/SegmentTree/persistent_segment_tree.cpp)
- View this file on GitHub
- Last update: 2021-04-23 23:44:44+09:00
- Link:
View error logs on GitHub Actions
Operations
モノイド$(M, \circ, e)$上の列を扱う。
PersistentSegmentTree(n)
PersistentSegmentTree(a[n])
-
update(i, v)
- $a_i \leftarrow a_i \circ v$で更新した
PersistentSegmentTree
を返す。 - Time complexity $O(\log N$)
- $a_i \leftarrow a_i \circ v$で更新した
-
get(i, j)
- $a_i \circ \ldots \circ a_{j-1}$を返す。
- Time complexity $O(\log N$)
-
at(i)
- $a_i$を返す。
- Time complexity $O(\log N$)
Requirements
Notes
- 2次元矩形領域中の点の総和を求めるようなクエリを処理できる。
- 逆元が必要。 (総和, xorなど)
Problems
References
- http://sigma425.hatenablog.com/entry/2014/12/30/164148
- http://omochan.hatenablog.com/entry/2017/09/07/002323
- https://qiita.com/hotman78/items/9c643feae1de087e6fc5
Verified with
Code
#pragma once
#include <cassert>
#include <vector>
namespace haar_lib {
template <typename Monoid>
class persistent_segment_tree {
public:
using value_type = typename Monoid::value_type;
private:
struct node {
value_type value;
node *left = nullptr, *right = nullptr;
node(const value_type &value) : value(value) {}
};
Monoid M_;
int depth_, size_;
node *root_ = nullptr;
persistent_segment_tree(int depth, node *root) : depth_(depth), root_(root) {}
node *assign(node *t, const std::vector<value_type> &init_list, int d, int &pos) {
if (d == depth_) {
t = new node(pos < (int) init_list.size() ? init_list[pos] : M_());
++pos;
} else {
t = new node(M_());
t->left = assign(t->left, init_list, d + 1, pos);
t->right = assign(t->right, init_list, d + 1, pos);
t->value = M_(t->left->value, t->right->value);
}
return t;
}
void init(const std::vector<value_type> &init_list) {
size_ = init_list.size();
depth_ = size_ == 1 ? 1 : 32 - __builtin_clz(size_ - 1) + 1;
int pos = 0;
root_ = assign(root_, init_list, 1, pos);
}
public:
persistent_segment_tree() {}
persistent_segment_tree(const std::vector<value_type> &init_list) {
init(init_list);
}
persistent_segment_tree(int size) {
init(std::vector(size, M_()));
}
persistent_segment_tree(int size, const value_type &value) {
init(std::vector(size, value));
}
protected:
node *set(node *t, int l, int r, int pos, const value_type &val) const {
if (r <= pos or pos + 1 <= l) {
return t;
} else if (pos <= l and r <= pos + 1) {
return new node(val);
} else {
const int m = (l + r) >> 1;
auto lp = set(t->left, l, m, pos, val);
auto rp = set(t->right, m, r, pos, val);
node *s = new node(M_(lp->value, rp->value));
s->left = lp;
s->right = rp;
return s;
}
}
public:
persistent_segment_tree set(int i, const value_type &val) const {
assert(0 <= i and i < size_);
node *t = set(root_, 0, 1 << (depth_ - 1), i, val);
return persistent_segment_tree(depth_, t);
}
persistent_segment_tree update(int i, const value_type &val) const {
return set(i, M_((*this)[i], val));
}
protected:
value_type get(node *t, int i, int j, int l, int r) const {
if (i <= l and r <= j) return t->value;
if (r <= i or j <= l) return M_();
const int m = (l + r) >> 1;
return M_(get(t->left, i, j, l, m), get(t->right, i, j, m, r));
}
public:
value_type fold(int l, int r) const {
assert(0 <= l and l <= r and r <= size_);
return get(root_, l, r, 0, 1 << (depth_ - 1));
}
value_type operator[](int i) const {
return fold(i, i + 1);
}
};
} // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/persistent_segment_tree.cpp"
#include <cassert>
#include <vector>
namespace haar_lib {
template <typename Monoid>
class persistent_segment_tree {
public:
using value_type = typename Monoid::value_type;
private:
struct node {
value_type value;
node *left = nullptr, *right = nullptr;
node(const value_type &value) : value(value) {}
};
Monoid M_;
int depth_, size_;
node *root_ = nullptr;
persistent_segment_tree(int depth, node *root) : depth_(depth), root_(root) {}
node *assign(node *t, const std::vector<value_type> &init_list, int d, int &pos) {
if (d == depth_) {
t = new node(pos < (int) init_list.size() ? init_list[pos] : M_());
++pos;
} else {
t = new node(M_());
t->left = assign(t->left, init_list, d + 1, pos);
t->right = assign(t->right, init_list, d + 1, pos);
t->value = M_(t->left->value, t->right->value);
}
return t;
}
void init(const std::vector<value_type> &init_list) {
size_ = init_list.size();
depth_ = size_ == 1 ? 1 : 32 - __builtin_clz(size_ - 1) + 1;
int pos = 0;
root_ = assign(root_, init_list, 1, pos);
}
public:
persistent_segment_tree() {}
persistent_segment_tree(const std::vector<value_type> &init_list) {
init(init_list);
}
persistent_segment_tree(int size) {
init(std::vector(size, M_()));
}
persistent_segment_tree(int size, const value_type &value) {
init(std::vector(size, value));
}
protected:
node *set(node *t, int l, int r, int pos, const value_type &val) const {
if (r <= pos or pos + 1 <= l) {
return t;
} else if (pos <= l and r <= pos + 1) {
return new node(val);
} else {
const int m = (l + r) >> 1;
auto lp = set(t->left, l, m, pos, val);
auto rp = set(t->right, m, r, pos, val);
node *s = new node(M_(lp->value, rp->value));
s->left = lp;
s->right = rp;
return s;
}
}
public:
persistent_segment_tree set(int i, const value_type &val) const {
assert(0 <= i and i < size_);
node *t = set(root_, 0, 1 << (depth_ - 1), i, val);
return persistent_segment_tree(depth_, t);
}
persistent_segment_tree update(int i, const value_type &val) const {
return set(i, M_((*this)[i], val));
}
protected:
value_type get(node *t, int i, int j, int l, int r) const {
if (i <= l and r <= j) return t->value;
if (r <= i or j <= l) return M_();
const int m = (l + r) >> 1;
return M_(get(t->left, i, j, l, m), get(t->right, i, j, m, r));
}
public:
value_type fold(int l, int r) const {
assert(0 <= l and l <= r and r <= size_);
return get(root_, l, r, 0, 1 << (depth_ - 1));
}
value_type operator[](int i) const {
return fold(i, i + 1);
}
};
} // namespace haar_lib