Dijkstra algorithm
(Mylib/Graph/ShortestPath/dijkstra.cpp)
Operations
Requirements
Notes
Problems
References
Depends on
Verified with
Code
#pragma once
#include <functional>
#include <optional>
#include <queue>
#include <utility>
#include <vector>
#include "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
auto dijkstra(const graph<T> &graph, std::vector<int> src) {
using P = std::pair<T, int>;
const int n = graph.size();
std::vector<std::optional<T>> dist(n);
std::vector<bool> check(n, false);
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
for (auto s : src) {
dist[s] = 0;
pq.emplace(0, s);
}
while (not pq.empty()) {
const auto [d, i] = pq.top();
pq.pop();
if (check[i]) continue;
check[i] = true;
for (auto &e : graph[i]) {
if (not dist[e.to]) {
dist[e.to] = d + e.cost;
pq.emplace(*dist[e.to], e.to);
} else {
if (*dist[e.to] > d + e.cost) {
dist[e.to] = d + e.cost;
if (not check[e.to]) pq.emplace(*dist[e.to], e.to);
}
}
}
}
return dist;
}
} // namespace haar_lib
#line 2 "Mylib/Graph/ShortestPath/dijkstra.cpp"
#include <functional>
#include <optional>
#include <queue>
#include <utility>
#include <vector>
#line 2 "Mylib/Graph/Template/graph.cpp"
#include <iostream>
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 8 "Mylib/Graph/ShortestPath/dijkstra.cpp"
namespace haar_lib {
template <typename T>
auto dijkstra(const graph<T> &graph, std::vector<int> src) {
using P = std::pair<T, int>;
const int n = graph.size();
std::vector<std::optional<T>> dist(n);
std::vector<bool> check(n, false);
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
for (auto s : src) {
dist[s] = 0;
pq.emplace(0, s);
}
while (not pq.empty()) {
const auto [d, i] = pq.top();
pq.pop();
if (check[i]) continue;
check[i] = true;
for (auto &e : graph[i]) {
if (not dist[e.to]) {
dist[e.to] = d + e.cost;
pq.emplace(*dist[e.to], e.to);
} else {
if (*dist[e.to] > d + e.cost) {
dist[e.to] = d + e.cost;
if (not check[e.to]) pq.emplace(*dist[e.to], e.to);
}
}
}
}
return dist;
}
} // namespace haar_lib
Back to top page