#pragma once #include <functional> #include <optional> #include <queue> #include <utility> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> auto dijkstra(const graph<T> &graph, std::vector<int> src) { using P = std::pair<T, int>; const int n = graph.size(); std::vector<std::optional<T>> dist(n); std::vector<bool> check(n, false); std::priority_queue<P, std::vector<P>, std::greater<P>> pq; for (auto s : src) { dist[s] = 0; pq.emplace(0, s); } while (not pq.empty()) { const auto [d, i] = pq.top(); pq.pop(); if (check[i]) continue; check[i] = true; for (auto &e : graph[i]) { if (not dist[e.to]) { dist[e.to] = d + e.cost; pq.emplace(*dist[e.to], e.to); } else { if (*dist[e.to] > d + e.cost) { dist[e.to] = d + e.cost; if (not check[e.to]) pq.emplace(*dist[e.to], e.to); } } } } return dist; } } // namespace haar_lib
#line 2 "Mylib/Graph/ShortestPath/dijkstra.cpp" #include <functional> #include <optional> #include <queue> #include <utility> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 8 "Mylib/Graph/ShortestPath/dijkstra.cpp" namespace haar_lib { template <typename T> auto dijkstra(const graph<T> &graph, std::vector<int> src) { using P = std::pair<T, int>; const int n = graph.size(); std::vector<std::optional<T>> dist(n); std::vector<bool> check(n, false); std::priority_queue<P, std::vector<P>, std::greater<P>> pq; for (auto s : src) { dist[s] = 0; pq.emplace(0, s); } while (not pq.empty()) { const auto [d, i] = pq.top(); pq.pop(); if (check[i]) continue; check[i] = true; for (auto &e : graph[i]) { if (not dist[e.to]) { dist[e.to] = d + e.cost; pq.emplace(*dist[e.to], e.to); } else { if (*dist[e.to] > d + e.cost) { dist[e.to] = d + e.cost; if (not check[e.to]) pq.emplace(*dist[e.to], e.to); } } } } return dist; } } // namespace haar_lib