HLDecomposition(tree, root)
path_query_vertex(int x, int y, f)
x
y
f
path_query_vertex(int x, int y, f, g)
path_query_edge(int x, int y, f)
subtree_query_vertext(int x, f)
subtree_query_edge(int x, f)
get_edge_id(int u, int v)
(u, v)
parent(int x)
lca(int u, int v)
u
v
get_id(int x)
id[x]
#pragma once #include <algorithm> #include <utility> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> class hl_decomposition { int n_; std::vector<int> sub_, // subtree size par_, // parent id head_, // chain head id id_, // id[original id] = hld id rid_, // rid[hld id] = original id next_, // next node in a chain end_; // int dfs_sub(tree<T> &tr, int cur, int p) { par_[cur] = p; int t = 0; for (auto &e : tr[cur]) { if (e.to == p) continue; sub_[cur] += dfs_sub(tr, e.to, cur); if (sub_[e.to] > t) { t = sub_[e.to]; next_[cur] = e.to; std::swap(e, tr[cur][0]); } } return sub_[cur]; } void dfs_build(const tree<T> &tr, int cur, int &i) { id_[cur] = i; rid_[i] = cur; ++i; for (auto &e : tr[cur]) { if (e.to == par_[cur]) continue; head_[e.to] = (e.to == tr[cur][0].to ? head_[cur] : e.to); dfs_build(tr, e.to, i); } end_[cur] = i; } public: hl_decomposition() {} hl_decomposition(tree<T> tr, int root) : n_(tr.size()), sub_(n_, 1), par_(n_, -1), head_(n_), id_(n_), rid_(n_), next_(n_, -1), end_(n_, -1) { dfs_sub(tr, root, -1); int i = 0; dfs_build(tr, root, i); } std::vector<std::tuple<int, int, bool>> path_query_vertex(int x, int y) const { std::vector<std::tuple<int, int, bool>> ret; const int w = lca(x, y); { int y = w; bool d = true; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max(id_[head_[y]], id_[x]), r = id_[y] + 1; if (l != r) ret.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } } x = y; y = w; { std::vector<std::tuple<int, int, bool>> temp; bool d = false; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max({id_[head_[y]], id_[x], id_[w] + 1}), r = id_[y] + 1; if (l != r) temp.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } std::reverse(temp.begin(), temp.end()); ret.insert(ret.end(), temp.begin(), temp.end()); } return ret; } std::vector<std::pair<int, int>> path_query_edge(int x, int y) const { std::vector<std::pair<int, int>> ret; while (1) { if (id_[x] > id_[y]) std::swap(x, y); if (head_[x] == head_[y]) { if (x != y) ret.emplace_back(id_[x] + 1, id_[y] + 1); break; } ret.emplace_back(id_[head_[y]], id_[y] + 1); y = par_[head_[y]]; } return ret; } std::pair<int, int> subtree_query_edge(int x) const { return {id_[x] + 1, end_[x]}; } std::pair<int, int> subtree_query_vertex(int x) const { return {id_[x], end_[x]}; } int get_edge_id(int u, int v) const { // 辺に対応するid if (par_[u] == v) return id_[u]; if (par_[v] == u) return id_[v]; return -1; } int parent(int x) const { return par_[x]; }; int lca(int u, int v) const { while (1) { if (id_[u] > id_[v]) std::swap(u, v); if (head_[u] == head_[v]) return u; v = par_[head_[v]]; } } int get_id(int x) const { return id_[x]; } }; } // namespace haar_lib
#line 2 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" #include <algorithm> #include <utility> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 6 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" namespace haar_lib { template <typename T> class hl_decomposition { int n_; std::vector<int> sub_, // subtree size par_, // parent id head_, // chain head id id_, // id[original id] = hld id rid_, // rid[hld id] = original id next_, // next node in a chain end_; // int dfs_sub(tree<T> &tr, int cur, int p) { par_[cur] = p; int t = 0; for (auto &e : tr[cur]) { if (e.to == p) continue; sub_[cur] += dfs_sub(tr, e.to, cur); if (sub_[e.to] > t) { t = sub_[e.to]; next_[cur] = e.to; std::swap(e, tr[cur][0]); } } return sub_[cur]; } void dfs_build(const tree<T> &tr, int cur, int &i) { id_[cur] = i; rid_[i] = cur; ++i; for (auto &e : tr[cur]) { if (e.to == par_[cur]) continue; head_[e.to] = (e.to == tr[cur][0].to ? head_[cur] : e.to); dfs_build(tr, e.to, i); } end_[cur] = i; } public: hl_decomposition() {} hl_decomposition(tree<T> tr, int root) : n_(tr.size()), sub_(n_, 1), par_(n_, -1), head_(n_), id_(n_), rid_(n_), next_(n_, -1), end_(n_, -1) { dfs_sub(tr, root, -1); int i = 0; dfs_build(tr, root, i); } std::vector<std::tuple<int, int, bool>> path_query_vertex(int x, int y) const { std::vector<std::tuple<int, int, bool>> ret; const int w = lca(x, y); { int y = w; bool d = true; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max(id_[head_[y]], id_[x]), r = id_[y] + 1; if (l != r) ret.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } } x = y; y = w; { std::vector<std::tuple<int, int, bool>> temp; bool d = false; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max({id_[head_[y]], id_[x], id_[w] + 1}), r = id_[y] + 1; if (l != r) temp.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } std::reverse(temp.begin(), temp.end()); ret.insert(ret.end(), temp.begin(), temp.end()); } return ret; } std::vector<std::pair<int, int>> path_query_edge(int x, int y) const { std::vector<std::pair<int, int>> ret; while (1) { if (id_[x] > id_[y]) std::swap(x, y); if (head_[x] == head_[y]) { if (x != y) ret.emplace_back(id_[x] + 1, id_[y] + 1); break; } ret.emplace_back(id_[head_[y]], id_[y] + 1); y = par_[head_[y]]; } return ret; } std::pair<int, int> subtree_query_edge(int x) const { return {id_[x] + 1, end_[x]}; } std::pair<int, int> subtree_query_vertex(int x) const { return {id_[x], end_[x]}; } int get_edge_id(int u, int v) const { // 辺に対応するid if (par_[u] == v) return id_[u]; if (par_[v] == u) return id_[v]; return -1; } int parent(int x) const { return par_[x]; }; int lca(int u, int v) const { while (1) { if (id_[u] > id_[v]) std::swap(u, v); if (head_[u] == head_[v]) return u; v = par_[head_[v]]; } } int get_id(int x) const { return id_[x]; } }; } // namespace haar_lib