#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2667" #include <iostream> #include "Mylib/AlgebraicStructure/Monoid/sum.cpp" #include "Mylib/AlgebraicStructure/MonoidAction/add_sum.cpp" #include "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include "Mylib/Graph/Template/graph.cpp" #include "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" #include "Mylib/IO/input_tuples.cpp" namespace hl = haar_lib; using sum = hl::sum_monoid<int64_t>; int main() { int N, Q; std::cin >> N >> Q; hl::tree<int> tree(N); tree.read<0, false, false>(N - 1); auto hld = hl::hl_decomposition(tree, 0); hl::lazy_segment_tree<hl::add_sum<sum, sum>> seg(N); for (auto [c] : hl::input_tuples<int>(Q)) { if (c == 0) { int u, v; std::cin >> u >> v; int64_t ans = 0; for (auto [l, r] : hld.path_query_edge(u, v)) { ans += seg.fold(l, r); } std::cout << ans << std::endl; } else { int v, x; std::cin >> v >> x; auto [l, r] = hld.subtree_query_edge(v); seg.update(l, r, x); } } return 0; }
#line 1 "test/aoj/2667/main.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2667" #include <iostream> #line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp" namespace haar_lib { template <typename T> struct sum_monoid { using value_type = T; value_type operator()() const { return 0; } value_type operator()(value_type a, value_type b) const { return a + b; } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/MonoidAction/add_sum.cpp" namespace haar_lib { template <typename MonoidUpdate, typename MonoidGet> struct add_sum { using monoid_get = MonoidGet; using monoid_update = MonoidUpdate; using value_type_get = typename MonoidGet::value_type; using value_type_update = typename MonoidUpdate::value_type; value_type_get operator()(value_type_get a, value_type_update b, int len) const { return a + b * len; } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include <cassert> #include <vector> namespace haar_lib { template <typename Monoid> class lazy_segment_tree { public: using monoid_get = typename Monoid::monoid_get; using monoid_update = typename Monoid::monoid_update; using value_type_get = typename monoid_get::value_type; using value_type_update = typename monoid_update::value_type; private: Monoid M_; monoid_get M_get_; monoid_update M_update_; int depth_, size_, hsize_; std::vector<value_type_get> data_; std::vector<value_type_update> lazy_; void propagate(int i) { if (lazy_[i] == M_update_()) return; if (i < hsize_) { lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]); lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]); } const int len = hsize_ >> (31 - __builtin_clz(i)); data_[i] = M_(data_[i], lazy_[i], len); lazy_[i] = M_update_(); } void propagate_top_down(int i) { std::vector<int> temp; while (i > 1) { i >>= 1; temp.push_back(i); } for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it); } void bottom_up(int i) { while (i > 1) { i >>= 1; propagate(i << 1 | 0); propagate(i << 1 | 1); data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } } public: lazy_segment_tree() {} lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_get_()), lazy_(size_, M_update_()) {} void update(int l, int r, const value_type_update &x) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; lazy_[R] = M_update_(x, lazy_[R]); propagate(R); } if (L & 1) { lazy_[L] = M_update_(x, lazy_[L]); propagate(L); ++L; } L >>= 1; R >>= 1; } bottom_up(l + hsize_); if (r < hsize_) bottom_up(r + hsize_); } void update(int i, const value_type_update &x) { update(i, i + 1, x); } value_type_get fold(int l, int r) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); value_type_get ret_left = M_get_(), ret_right = M_get_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; propagate(R); ret_right = M_get_(data_[R], ret_right); } if (L & 1) { propagate(L); ret_left = M_get_(ret_left, data_[L]); ++L; } L >>= 1; R >>= 1; } return M_get_(ret_left, ret_right); } value_type_get fold_all() { return fold(0, hsize_); } value_type_get operator[](int i) { return fold(i, i + 1); } template <typename T> void init(const T &val) { init_with_vector(std::vector<T>(hsize_, val)); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_get_()); lazy_.assign(size_, M_update_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i]; for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } }; } // namespace haar_lib #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 2 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" #include <algorithm> #include <utility> #line 6 "Mylib/Graph/TreeUtils/heavy_light_decomposition.cpp" namespace haar_lib { template <typename T> class hl_decomposition { int n_; std::vector<int> sub_, // subtree size par_, // parent id head_, // chain head id id_, // id[original id] = hld id rid_, // rid[hld id] = original id next_, // next node in a chain end_; // int dfs_sub(tree<T> &tr, int cur, int p) { par_[cur] = p; int t = 0; for (auto &e : tr[cur]) { if (e.to == p) continue; sub_[cur] += dfs_sub(tr, e.to, cur); if (sub_[e.to] > t) { t = sub_[e.to]; next_[cur] = e.to; std::swap(e, tr[cur][0]); } } return sub_[cur]; } void dfs_build(const tree<T> &tr, int cur, int &i) { id_[cur] = i; rid_[i] = cur; ++i; for (auto &e : tr[cur]) { if (e.to == par_[cur]) continue; head_[e.to] = (e.to == tr[cur][0].to ? head_[cur] : e.to); dfs_build(tr, e.to, i); } end_[cur] = i; } public: hl_decomposition() {} hl_decomposition(tree<T> tr, int root) : n_(tr.size()), sub_(n_, 1), par_(n_, -1), head_(n_), id_(n_), rid_(n_), next_(n_, -1), end_(n_, -1) { dfs_sub(tr, root, -1); int i = 0; dfs_build(tr, root, i); } std::vector<std::tuple<int, int, bool>> path_query_vertex(int x, int y) const { std::vector<std::tuple<int, int, bool>> ret; const int w = lca(x, y); { int y = w; bool d = true; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max(id_[head_[y]], id_[x]), r = id_[y] + 1; if (l != r) ret.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } } x = y; y = w; { std::vector<std::tuple<int, int, bool>> temp; bool d = false; while (1) { if (id_[x] > id_[y]) std::swap(x, y), d = not d; int l = std::max({id_[head_[y]], id_[x], id_[w] + 1}), r = id_[y] + 1; if (l != r) temp.emplace_back(l, r, d); if (head_[x] == head_[y]) break; y = par_[head_[y]]; } std::reverse(temp.begin(), temp.end()); ret.insert(ret.end(), temp.begin(), temp.end()); } return ret; } std::vector<std::pair<int, int>> path_query_edge(int x, int y) const { std::vector<std::pair<int, int>> ret; while (1) { if (id_[x] > id_[y]) std::swap(x, y); if (head_[x] == head_[y]) { if (x != y) ret.emplace_back(id_[x] + 1, id_[y] + 1); break; } ret.emplace_back(id_[head_[y]], id_[y] + 1); y = par_[head_[y]]; } return ret; } std::pair<int, int> subtree_query_edge(int x) const { return {id_[x] + 1, end_[x]}; } std::pair<int, int> subtree_query_vertex(int x) const { return {id_[x], end_[x]}; } int get_edge_id(int u, int v) const { // 辺に対応するid if (par_[u] == v) return id_[u]; if (par_[v] == u) return id_[v]; return -1; } int parent(int x) const { return par_[x]; }; int lca(int u, int v) const { while (1) { if (id_[u] > id_[v]) std::swap(u, v); if (head_[u] == head_[v]) return u; v = par_[head_[v]]; } } int get_id(int x) const { return id_[x]; } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 10 "test/aoj/2667/main.test.cpp" namespace hl = haar_lib; using sum = hl::sum_monoid<int64_t>; int main() { int N, Q; std::cin >> N >> Q; hl::tree<int> tree(N); tree.read<0, false, false>(N - 1); auto hld = hl::hl_decomposition(tree, 0); hl::lazy_segment_tree<hl::add_sum<sum, sum>> seg(N); for (auto [c] : hl::input_tuples<int>(Q)) { if (c == 0) { int u, v; std::cin >> u >> v; int64_t ans = 0; for (auto [l, r] : hld.path_query_edge(u, v)) { ans += seg.fold(l, r); } std::cout << ans << std::endl; } else { int v, x; std::cin >> v >> x; auto [l, r] = hld.subtree_query_edge(v); seg.update(l, r, x); } } return 0; }