kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:question: Lazy segment tree
(Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp)

Operations

Requirements

Notes

Problems

References

Verified with

Code

#pragma once
#include <cassert>
#include <vector>

namespace haar_lib {
  template <typename Monoid>
  class lazy_segment_tree {
  public:
    using monoid_get        = typename Monoid::monoid_get;
    using monoid_update     = typename Monoid::monoid_update;
    using value_type_get    = typename monoid_get::value_type;
    using value_type_update = typename monoid_update::value_type;

  private:
    Monoid M_;
    monoid_get M_get_;
    monoid_update M_update_;

    int depth_, size_, hsize_;
    std::vector<value_type_get> data_;
    std::vector<value_type_update> lazy_;

    void propagate(int i) {
      if (lazy_[i] == M_update_()) return;
      if (i < hsize_) {
        lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]);
        lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]);
      }
      const int len = hsize_ >> (31 - __builtin_clz(i));
      data_[i]      = M_(data_[i], lazy_[i], len);
      lazy_[i]      = M_update_();
    }

    void propagate_top_down(int i) {
      std::vector<int> temp;
      while (i > 1) {
        i >>= 1;
        temp.push_back(i);
      }

      for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it);
    }

    void bottom_up(int i) {
      while (i > 1) {
        i >>= 1;
        propagate(i << 1 | 0);
        propagate(i << 1 | 1);
        data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
      }
    }

  public:
    lazy_segment_tree() {}
    lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
                               size_(1 << depth_),
                               hsize_(size_ / 2),
                               data_(size_, M_get_()),
                               lazy_(size_, M_update_()) {}

    void update(int l, int r, const value_type_update &x) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          lazy_[R] = M_update_(x, lazy_[R]);
          propagate(R);
        }
        if (L & 1) {
          lazy_[L] = M_update_(x, lazy_[L]);
          propagate(L);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      bottom_up(l + hsize_);
      if (r < hsize_) bottom_up(r + hsize_);
    }

    void update(int i, const value_type_update &x) { update(i, i + 1, x); }

    value_type_get fold(int l, int r) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      value_type_get ret_left = M_get_(), ret_right = M_get_();

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          propagate(R);
          ret_right = M_get_(data_[R], ret_right);
        }
        if (L & 1) {
          propagate(L);
          ret_left = M_get_(ret_left, data_[L]);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      return M_get_(ret_left, ret_right);
    }

    value_type_get fold_all() {
      return fold(0, hsize_);
    }

    value_type_get operator[](int i) { return fold(i, i + 1); }

    template <typename T>
    void init(const T &val) {
      init_with_vector(std::vector<T>(hsize_, val));
    }

    template <typename T>
    void init_with_vector(const std::vector<T> &val) {
      data_.assign(size_, M_get_());
      lazy_.assign(size_, M_update_());
      for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i];
      for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp"
#include <cassert>
#include <vector>

namespace haar_lib {
  template <typename Monoid>
  class lazy_segment_tree {
  public:
    using monoid_get        = typename Monoid::monoid_get;
    using monoid_update     = typename Monoid::monoid_update;
    using value_type_get    = typename monoid_get::value_type;
    using value_type_update = typename monoid_update::value_type;

  private:
    Monoid M_;
    monoid_get M_get_;
    monoid_update M_update_;

    int depth_, size_, hsize_;
    std::vector<value_type_get> data_;
    std::vector<value_type_update> lazy_;

    void propagate(int i) {
      if (lazy_[i] == M_update_()) return;
      if (i < hsize_) {
        lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]);
        lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]);
      }
      const int len = hsize_ >> (31 - __builtin_clz(i));
      data_[i]      = M_(data_[i], lazy_[i], len);
      lazy_[i]      = M_update_();
    }

    void propagate_top_down(int i) {
      std::vector<int> temp;
      while (i > 1) {
        i >>= 1;
        temp.push_back(i);
      }

      for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it);
    }

    void bottom_up(int i) {
      while (i > 1) {
        i >>= 1;
        propagate(i << 1 | 0);
        propagate(i << 1 | 1);
        data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
      }
    }

  public:
    lazy_segment_tree() {}
    lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
                               size_(1 << depth_),
                               hsize_(size_ / 2),
                               data_(size_, M_get_()),
                               lazy_(size_, M_update_()) {}

    void update(int l, int r, const value_type_update &x) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          lazy_[R] = M_update_(x, lazy_[R]);
          propagate(R);
        }
        if (L & 1) {
          lazy_[L] = M_update_(x, lazy_[L]);
          propagate(L);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      bottom_up(l + hsize_);
      if (r < hsize_) bottom_up(r + hsize_);
    }

    void update(int i, const value_type_update &x) { update(i, i + 1, x); }

    value_type_get fold(int l, int r) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      value_type_get ret_left = M_get_(), ret_right = M_get_();

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          propagate(R);
          ret_right = M_get_(data_[R], ret_right);
        }
        if (L & 1) {
          propagate(L);
          ret_left = M_get_(ret_left, data_[L]);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      return M_get_(ret_left, ret_right);
    }

    value_type_get fold_all() {
      return fold(0, hsize_);
    }

    value_type_get operator[](int i) { return fold(i, i + 1); }

    template <typename T>
    void init(const T &val) {
      init_with_vector(std::vector<T>(hsize_, val));
    }

    template <typename T>
    void init_with_vector(const std::vector<T> &val) {
      data_.assign(size_, M_get_());
      lazy_.assign(size_, M_update_());
      for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i];
      for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }
  };
}  // namespace haar_lib
Back to top page