#define PROBLEM "https://yukicoder.me/problems/no/899" #include <iostream> #include "Mylib/AlgebraicStructure/Monoid/sum.cpp" #include "Mylib/AlgebraicStructure/Monoid/update.cpp" #include "Mylib/AlgebraicStructure/MonoidAction/update_sum.cpp" #include "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include "Mylib/Graph/Template/graph.cpp" #include "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/IO/input_vector.cpp" namespace hl = haar_lib; using update = hl::update_monoid<int64_t>; using sum = hl::sum_monoid<int64_t>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N; std::cin >> N; hl::tree<int> tree(N); tree.read<0, false, false>(N - 1); auto res = hl::euler_tour_bfs<int>(tree, 0); auto A = hl::input_vector<int64_t>(N); hl::lazy_segment_tree<hl::update_sum<update, sum>> seg(N); for (int i = 0; i < N; ++i) { res.query_at(i, [&](int l, int r) { seg.update(l, r, A[i]); }); } int Q; std::cin >> Q; for (auto [x] : hl::input_tuples<int>(Q)) { int64_t ans = 0; auto f = [&](int l, int r) { ans += seg.fold(l, r); seg.update(l, r, 0); }; // 親の親 res.query_at(res.get_ancestor(x, 2), f); // 親 res.query_at(res.get_ancestor(x, 1), f); // 親の子 res.query_children(res.get_parent(x), 1, f); // 自分 res.query_at(x, f); // 子 res.query_children(x, 1, f); // 子の子 res.query_children(x, 2, f); res.query_at( x, [&](int l, int r) { seg.update(l, r, ans); }); std::cout << ans << std::endl; } return 0; }
#line 1 "test/yukicoder/899/main.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/899" #include <iostream> #line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp" namespace haar_lib { template <typename T> struct sum_monoid { using value_type = T; value_type operator()() const { return 0; } value_type operator()(value_type a, value_type b) const { return a + b; } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/Monoid/update.cpp" #include <optional> namespace haar_lib { template <typename T> struct update_monoid { using value_type = std::optional<T>; value_type operator()() const { return std::nullopt; } value_type operator()(const value_type &a, const value_type &b) const { return (a ? a : b); } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/MonoidAction/update_sum.cpp" namespace haar_lib { template <typename MonoidUpdate, typename MonoidGet> struct update_sum { using monoid_get = MonoidGet; using monoid_update = MonoidUpdate; using value_type_get = typename MonoidGet::value_type; using value_type_update = typename MonoidUpdate::value_type; value_type_get operator()(value_type_get a, value_type_update b, int len) const { return b ? *b * len : a; } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include <cassert> #include <vector> namespace haar_lib { template <typename Monoid> class lazy_segment_tree { public: using monoid_get = typename Monoid::monoid_get; using monoid_update = typename Monoid::monoid_update; using value_type_get = typename monoid_get::value_type; using value_type_update = typename monoid_update::value_type; private: Monoid M_; monoid_get M_get_; monoid_update M_update_; int depth_, size_, hsize_; std::vector<value_type_get> data_; std::vector<value_type_update> lazy_; void propagate(int i) { if (lazy_[i] == M_update_()) return; if (i < hsize_) { lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]); lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]); } const int len = hsize_ >> (31 - __builtin_clz(i)); data_[i] = M_(data_[i], lazy_[i], len); lazy_[i] = M_update_(); } void propagate_top_down(int i) { std::vector<int> temp; while (i > 1) { i >>= 1; temp.push_back(i); } for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it); } void bottom_up(int i) { while (i > 1) { i >>= 1; propagate(i << 1 | 0); propagate(i << 1 | 1); data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } } public: lazy_segment_tree() {} lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_get_()), lazy_(size_, M_update_()) {} void update(int l, int r, const value_type_update &x) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; lazy_[R] = M_update_(x, lazy_[R]); propagate(R); } if (L & 1) { lazy_[L] = M_update_(x, lazy_[L]); propagate(L); ++L; } L >>= 1; R >>= 1; } bottom_up(l + hsize_); if (r < hsize_) bottom_up(r + hsize_); } void update(int i, const value_type_update &x) { update(i, i + 1, x); } value_type_get fold(int l, int r) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); value_type_get ret_left = M_get_(), ret_right = M_get_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; propagate(R); ret_right = M_get_(data_[R], ret_right); } if (L & 1) { propagate(L); ret_left = M_get_(ret_left, data_[L]); ++L; } L >>= 1; R >>= 1; } return M_get_(ret_left, ret_right); } value_type_get fold_all() { return fold(0, hsize_); } value_type_get operator[](int i) { return fold(i, i + 1); } template <typename T> void init(const T &val) { init_with_vector(std::vector<T>(hsize_, val)); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_get_()); lazy_.assign(size_, M_update_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i]; for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } }; } // namespace haar_lib #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 2 "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp" #include <queue> #line 5 "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp" namespace haar_lib { template <typename T> class euler_tour_bfs { int N_; std::vector<int> parent_, depth_, left_, right_; std::vector<std::vector<int>> bfs_order_, dfs_order_; public: euler_tour_bfs() {} euler_tour_bfs(const tree<T> &tr, int root) : N_(tr.size()), parent_(N_), depth_(N_), left_(N_), right_(N_) { { int ord = 0; dfs(tr, root, -1, 0, ord); } { std::queue<std::pair<int, int>> q; q.emplace(root, 0); int ord = 0; while (not q.empty()) { auto [i, d] = q.front(); q.pop(); if ((int) bfs_order_.size() <= d) bfs_order_.emplace_back(); bfs_order_[d].push_back(ord); ++ord; for (auto &e : tr[i]) { if (e.to == parent_[i]) continue; q.emplace(e.to, d + 1); } } } } private: void dfs(const tree<T> &tr, int cur, int par, int d, int &ord) { parent_[cur] = par; depth_[cur] = d; if ((int) dfs_order_.size() <= d) dfs_order_.emplace_back(); dfs_order_[d].push_back(ord); left_[cur] = ord; ++ord; for (auto &e : tr[cur]) { if (e.to == par) continue; dfs(tr, e.to, cur, d + 1, ord); } right_[cur] = ord; } public: template <typename Func> void query_children(int i, int d, const Func &f) const { if (i != -1) { d += depth_[i]; if ((int) bfs_order_.size() > d) { int l = std::lower_bound(dfs_order_[d].begin(), dfs_order_[d].end(), left_[i]) - dfs_order_[d].begin(); int r = std::lower_bound(dfs_order_[d].begin(), dfs_order_[d].end(), right_[i]) - dfs_order_[d].begin(); if (l >= (int) bfs_order_[d].size()) return; if (r == l) return; f(bfs_order_[d][l], bfs_order_[d][r - 1] + 1); } } } template <typename Func> void query_at(int i, const Func &f) const { query_children(i, 0, f); } int get_parent(int i) const { if (i == -1) return -1; return parent_[i]; } int get_ancestor(int i, int k) const { int ret = i; for (int i = 0; i < k; ++i) { ret = get_parent(ret); if (ret == -1) break; } return ret; } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #include <utility> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 4 "Mylib/IO/input_vector.cpp" namespace haar_lib { template <typename T> std::vector<T> input_vector(int N) { std::vector<T> ret(N); for (int i = 0; i < N; ++i) std::cin >> ret[i]; return ret; } template <typename T> std::vector<std::vector<T>> input_vector(int N, int M) { std::vector<std::vector<T>> ret(N); for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M); return ret; } } // namespace haar_lib #line 12 "test/yukicoder/899/main.test.cpp" namespace hl = haar_lib; using update = hl::update_monoid<int64_t>; using sum = hl::sum_monoid<int64_t>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N; std::cin >> N; hl::tree<int> tree(N); tree.read<0, false, false>(N - 1); auto res = hl::euler_tour_bfs<int>(tree, 0); auto A = hl::input_vector<int64_t>(N); hl::lazy_segment_tree<hl::update_sum<update, sum>> seg(N); for (int i = 0; i < N; ++i) { res.query_at(i, [&](int l, int r) { seg.update(l, r, A[i]); }); } int Q; std::cin >> Q; for (auto [x] : hl::input_tuples<int>(Q)) { int64_t ans = 0; auto f = [&](int l, int r) { ans += seg.fold(l, r); seg.update(l, r, 0); }; // 親の親 res.query_at(res.get_ancestor(x, 2), f); // 親 res.query_at(res.get_ancestor(x, 1), f); // 親の子 res.query_children(res.get_parent(x), 1, f); // 自分 res.query_at(x, f); // 子 res.query_children(x, 1, f); // 子の子 res.query_children(x, 2, f); res.query_at( x, [&](int l, int r) { seg.update(l, r, ans); }); std::cout << ans << std::endl; } return 0; }