kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:x: test/yukicoder/899/main.test.cpp

Depends on

Code

#define PROBLEM "https://yukicoder.me/problems/no/899"

#include <iostream>
#include "Mylib/AlgebraicStructure/Monoid/sum.cpp"
#include "Mylib/AlgebraicStructure/Monoid/update.cpp"
#include "Mylib/AlgebraicStructure/MonoidAction/update_sum.cpp"
#include "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp"
#include "Mylib/Graph/Template/graph.cpp"
#include "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/IO/input_vector.cpp"

namespace hl = haar_lib;

using update = hl::update_monoid<int64_t>;
using sum    = hl::sum_monoid<int64_t>;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int N;
  std::cin >> N;

  hl::tree<int> tree(N);
  tree.read<0, false, false>(N - 1);

  auto res = hl::euler_tour_bfs<int>(tree, 0);

  auto A = hl::input_vector<int64_t>(N);
  hl::lazy_segment_tree<hl::update_sum<update, sum>> seg(N);

  for (int i = 0; i < N; ++i) {
    res.query_at(i, [&](int l, int r) { seg.update(l, r, A[i]); });
  }

  int Q;
  std::cin >> Q;

  for (auto [x] : hl::input_tuples<int>(Q)) {
    int64_t ans = 0;

    auto f =
        [&](int l, int r) {
          ans += seg.fold(l, r);
          seg.update(l, r, 0);
        };

    // 親の親
    res.query_at(res.get_ancestor(x, 2), f);

    // 親
    res.query_at(res.get_ancestor(x, 1), f);

    // 親の子
    res.query_children(res.get_parent(x), 1, f);

    // 自分
    res.query_at(x, f);

    // 子
    res.query_children(x, 1, f);

    // 子の子
    res.query_children(x, 2, f);

    res.query_at(
        x,
        [&](int l, int r) {
          seg.update(l, r, ans);
        });

    std::cout << ans << std::endl;
  }

  return 0;
}
#line 1 "test/yukicoder/899/main.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/899"

#include <iostream>
#line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp"

namespace haar_lib {
  template <typename T>
  struct sum_monoid {
    using value_type = T;
    value_type operator()() const { return 0; }
    value_type operator()(value_type a, value_type b) const { return a + b; }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/Monoid/update.cpp"
#include <optional>

namespace haar_lib {
  template <typename T>
  struct update_monoid {
    using value_type = std::optional<T>;
    value_type operator()() const { return std::nullopt; }
    value_type operator()(const value_type &a, const value_type &b) const { return (a ? a : b); }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/MonoidAction/update_sum.cpp"

namespace haar_lib {
  template <typename MonoidUpdate, typename MonoidGet>
  struct update_sum {
    using monoid_get        = MonoidGet;
    using monoid_update     = MonoidUpdate;
    using value_type_get    = typename MonoidGet::value_type;
    using value_type_update = typename MonoidUpdate::value_type;

    value_type_get operator()(value_type_get a, value_type_update b, int len) const {
      return b ? *b * len : a;
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp"
#include <cassert>
#include <vector>

namespace haar_lib {
  template <typename Monoid>
  class lazy_segment_tree {
  public:
    using monoid_get        = typename Monoid::monoid_get;
    using monoid_update     = typename Monoid::monoid_update;
    using value_type_get    = typename monoid_get::value_type;
    using value_type_update = typename monoid_update::value_type;

  private:
    Monoid M_;
    monoid_get M_get_;
    monoid_update M_update_;

    int depth_, size_, hsize_;
    std::vector<value_type_get> data_;
    std::vector<value_type_update> lazy_;

    void propagate(int i) {
      if (lazy_[i] == M_update_()) return;
      if (i < hsize_) {
        lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]);
        lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]);
      }
      const int len = hsize_ >> (31 - __builtin_clz(i));
      data_[i]      = M_(data_[i], lazy_[i], len);
      lazy_[i]      = M_update_();
    }

    void propagate_top_down(int i) {
      std::vector<int> temp;
      while (i > 1) {
        i >>= 1;
        temp.push_back(i);
      }

      for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it);
    }

    void bottom_up(int i) {
      while (i > 1) {
        i >>= 1;
        propagate(i << 1 | 0);
        propagate(i << 1 | 1);
        data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
      }
    }

  public:
    lazy_segment_tree() {}
    lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
                               size_(1 << depth_),
                               hsize_(size_ / 2),
                               data_(size_, M_get_()),
                               lazy_(size_, M_update_()) {}

    void update(int l, int r, const value_type_update &x) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          lazy_[R] = M_update_(x, lazy_[R]);
          propagate(R);
        }
        if (L & 1) {
          lazy_[L] = M_update_(x, lazy_[L]);
          propagate(L);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      bottom_up(l + hsize_);
      if (r < hsize_) bottom_up(r + hsize_);
    }

    void update(int i, const value_type_update &x) { update(i, i + 1, x); }

    value_type_get fold(int l, int r) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      value_type_get ret_left = M_get_(), ret_right = M_get_();

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          propagate(R);
          ret_right = M_get_(data_[R], ret_right);
        }
        if (L & 1) {
          propagate(L);
          ret_left = M_get_(ret_left, data_[L]);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      return M_get_(ret_left, ret_right);
    }

    value_type_get fold_all() {
      return fold(0, hsize_);
    }

    value_type_get operator[](int i) { return fold(i, i + 1); }

    template <typename T>
    void init(const T &val) {
      init_with_vector(std::vector<T>(hsize_, val));
    }

    template <typename T>
    void init_with_vector(const std::vector<T> &val) {
      data_.assign(size_, M_get_());
      lazy_.assign(size_, M_update_());
      for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i];
      for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }
  };
}  // namespace haar_lib
#line 4 "Mylib/Graph/Template/graph.cpp"

namespace haar_lib {
  template <typename T>
  struct edge {
    int from, to;
    T cost;
    int index = -1;
    edge() {}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
  };

  template <typename T>
  struct graph {
    using weight_type = T;
    using edge_type   = edge<T>;

    std::vector<std::vector<edge<T>>> data;

    auto& operator[](size_t i) { return data[i]; }
    const auto& operator[](size_t i) const { return data[i]; }

    auto begin() const { return data.begin(); }
    auto end() const { return data.end(); }

    graph() {}
    graph(int N) : data(N) {}

    bool empty() const { return data.empty(); }
    int size() const { return data.size(); }

    void add_edge(int i, int j, T w, int index = -1) {
      data[i].emplace_back(i, j, w, index);
    }

    void add_undirected(int i, int j, T w, int index = -1) {
      add_edge(i, j, w, index);
      add_edge(j, i, w, index);
    }

    template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
    void read(int M) {
      for (int i = 0; i < M; ++i) {
        int u, v;
        std::cin >> u >> v;
        u -= I;
        v -= I;
        T w = 1;
        if (WEIGHTED) std::cin >> w;
        if (DIRECTED)
          add_edge(u, v, w, i);
        else
          add_undirected(u, v, w, i);
      }
    }
  };

  template <typename T>
  using tree = graph<T>;
}  // namespace haar_lib
#line 2 "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp"
#include <queue>
#line 5 "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp"

namespace haar_lib {
  template <typename T>
  class euler_tour_bfs {
    int N_;
    std::vector<int> parent_, depth_, left_, right_;
    std::vector<std::vector<int>> bfs_order_, dfs_order_;

  public:
    euler_tour_bfs() {}
    euler_tour_bfs(const tree<T> &tr, int root) : N_(tr.size()), parent_(N_), depth_(N_), left_(N_), right_(N_) {
      {
        int ord = 0;
        dfs(tr, root, -1, 0, ord);
      }

      {
        std::queue<std::pair<int, int>> q;
        q.emplace(root, 0);
        int ord = 0;

        while (not q.empty()) {
          auto [i, d] = q.front();
          q.pop();

          if ((int) bfs_order_.size() <= d) bfs_order_.emplace_back();
          bfs_order_[d].push_back(ord);
          ++ord;

          for (auto &e : tr[i]) {
            if (e.to == parent_[i]) continue;
            q.emplace(e.to, d + 1);
          }
        }
      }
    }

  private:
    void dfs(const tree<T> &tr, int cur, int par, int d, int &ord) {
      parent_[cur] = par;
      depth_[cur]  = d;

      if ((int) dfs_order_.size() <= d) dfs_order_.emplace_back();
      dfs_order_[d].push_back(ord);
      left_[cur] = ord;
      ++ord;

      for (auto &e : tr[cur]) {
        if (e.to == par) continue;
        dfs(tr, e.to, cur, d + 1, ord);
      }

      right_[cur] = ord;
    }

  public:
    template <typename Func>
    void query_children(int i, int d, const Func &f) const {
      if (i != -1) {
        d += depth_[i];
        if ((int) bfs_order_.size() > d) {
          int l = std::lower_bound(dfs_order_[d].begin(), dfs_order_[d].end(), left_[i]) - dfs_order_[d].begin();
          int r = std::lower_bound(dfs_order_[d].begin(), dfs_order_[d].end(), right_[i]) - dfs_order_[d].begin();

          if (l >= (int) bfs_order_[d].size()) return;
          if (r == l) return;

          f(bfs_order_[d][l], bfs_order_[d][r - 1] + 1);
        }
      }
    }

    template <typename Func>
    void query_at(int i, const Func &f) const {
      query_children(i, 0, f);
    }

    int get_parent(int i) const {
      if (i == -1) return -1;
      return parent_[i];
    }

    int get_ancestor(int i, int k) const {
      int ret = i;
      for (int i = 0; i < k; ++i) {
        ret = get_parent(ret);
        if (ret == -1) break;
      }
      return ret;
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#include <utility>
#line 6 "Mylib/IO/input_tuple.cpp"

namespace haar_lib {
  template <typename T, size_t... I>
  static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
    (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
  }

  template <typename T, typename U>
  std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
    s >> value.first >> value.second;
    return s;
  }

  template <typename... Args>
  std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
    input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
    return s;
  }
}  // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"

namespace haar_lib {
  template <typename... Args>
  class InputTuples {
    struct iter {
      using value_type = std::tuple<Args...>;
      value_type value;
      bool fetched = false;
      int N, c = 0;

      value_type operator*() {
        if (not fetched) {
          std::cin >> value;
        }
        return value;
      }

      void operator++() {
        ++c;
        fetched = false;
      }

      bool operator!=(iter &) const {
        return c < N;
      }

      iter(int N) : N(N) {}
    };

    int N;

  public:
    InputTuples(int N) : N(N) {}

    iter begin() const { return iter(N); }
    iter end() const { return iter(N); }
  };

  template <typename... Args>
  auto input_tuples(int N) {
    return InputTuples<Args...>(N);
  }
}  // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"

namespace haar_lib {
  template <typename T>
  std::vector<T> input_vector(int N) {
    std::vector<T> ret(N);
    for (int i = 0; i < N; ++i) std::cin >> ret[i];
    return ret;
  }

  template <typename T>
  std::vector<std::vector<T>> input_vector(int N, int M) {
    std::vector<std::vector<T>> ret(N);
    for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
    return ret;
  }
}  // namespace haar_lib
#line 12 "test/yukicoder/899/main.test.cpp"

namespace hl = haar_lib;

using update = hl::update_monoid<int64_t>;
using sum    = hl::sum_monoid<int64_t>;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int N;
  std::cin >> N;

  hl::tree<int> tree(N);
  tree.read<0, false, false>(N - 1);

  auto res = hl::euler_tour_bfs<int>(tree, 0);

  auto A = hl::input_vector<int64_t>(N);
  hl::lazy_segment_tree<hl::update_sum<update, sum>> seg(N);

  for (int i = 0; i < N; ++i) {
    res.query_at(i, [&](int l, int r) { seg.update(l, r, A[i]); });
  }

  int Q;
  std::cin >> Q;

  for (auto [x] : hl::input_tuples<int>(Q)) {
    int64_t ans = 0;

    auto f =
        [&](int l, int r) {
          ans += seg.fold(l, r);
          seg.update(l, r, 0);
        };

    // 親の親
    res.query_at(res.get_ancestor(x, 2), f);

    // 親
    res.query_at(res.get_ancestor(x, 1), f);

    // 親の子
    res.query_children(res.get_parent(x), 1, f);

    // 自分
    res.query_at(x, f);

    // 子
    res.query_children(x, 1, f);

    // 子の子
    res.query_children(x, 2, f);

    res.query_at(
        x,
        [&](int l, int r) {
          seg.update(l, r, ans);
        });

    std::cout << ans << std::endl;
  }

  return 0;
}
Back to top page