#define PROBLEM "https://yukicoder.me/problems/no/899"
#include <iostream>
#include "Mylib/AlgebraicStructure/Monoid/sum.cpp"
#include "Mylib/AlgebraicStructure/Monoid/update.cpp"
#include "Mylib/AlgebraicStructure/MonoidAction/update_sum.cpp"
#include "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp"
#include "Mylib/Graph/Template/graph.cpp"
#include "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/IO/input_vector.cpp"
namespace hl = haar_lib;
using update = hl::update_monoid<int64_t>;
using sum = hl::sum_monoid<int64_t>;
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int N;
std::cin >> N;
hl::tree<int> tree(N);
tree.read<0, false, false>(N - 1);
auto res = hl::euler_tour_bfs<int>(tree, 0);
auto A = hl::input_vector<int64_t>(N);
hl::lazy_segment_tree<hl::update_sum<update, sum>> seg(N);
for (int i = 0; i < N; ++i) {
res.query_at(i, [&](int l, int r) { seg.update(l, r, A[i]); });
}
int Q;
std::cin >> Q;
for (auto [x] : hl::input_tuples<int>(Q)) {
int64_t ans = 0;
auto f =
[&](int l, int r) {
ans += seg.fold(l, r);
seg.update(l, r, 0);
};
// 親の親
res.query_at(res.get_ancestor(x, 2), f);
// 親
res.query_at(res.get_ancestor(x, 1), f);
// 親の子
res.query_children(res.get_parent(x), 1, f);
// 自分
res.query_at(x, f);
// 子
res.query_children(x, 1, f);
// 子の子
res.query_children(x, 2, f);
res.query_at(
x,
[&](int l, int r) {
seg.update(l, r, ans);
});
std::cout << ans << std::endl;
}
return 0;
}
#line 1 "test/yukicoder/899/main.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/899"
#include <iostream>
#line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp"
namespace haar_lib {
template <typename T>
struct sum_monoid {
using value_type = T;
value_type operator()() const { return 0; }
value_type operator()(value_type a, value_type b) const { return a + b; }
};
} // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/Monoid/update.cpp"
#include <optional>
namespace haar_lib {
template <typename T>
struct update_monoid {
using value_type = std::optional<T>;
value_type operator()() const { return std::nullopt; }
value_type operator()(const value_type &a, const value_type &b) const { return (a ? a : b); }
};
} // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/MonoidAction/update_sum.cpp"
namespace haar_lib {
template <typename MonoidUpdate, typename MonoidGet>
struct update_sum {
using monoid_get = MonoidGet;
using monoid_update = MonoidUpdate;
using value_type_get = typename MonoidGet::value_type;
using value_type_update = typename MonoidUpdate::value_type;
value_type_get operator()(value_type_get a, value_type_update b, int len) const {
return b ? *b * len : a;
}
};
} // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp"
#include <cassert>
#include <vector>
namespace haar_lib {
template <typename Monoid>
class lazy_segment_tree {
public:
using monoid_get = typename Monoid::monoid_get;
using monoid_update = typename Monoid::monoid_update;
using value_type_get = typename monoid_get::value_type;
using value_type_update = typename monoid_update::value_type;
private:
Monoid M_;
monoid_get M_get_;
monoid_update M_update_;
int depth_, size_, hsize_;
std::vector<value_type_get> data_;
std::vector<value_type_update> lazy_;
void propagate(int i) {
if (lazy_[i] == M_update_()) return;
if (i < hsize_) {
lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]);
lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]);
}
const int len = hsize_ >> (31 - __builtin_clz(i));
data_[i] = M_(data_[i], lazy_[i], len);
lazy_[i] = M_update_();
}
void propagate_top_down(int i) {
std::vector<int> temp;
while (i > 1) {
i >>= 1;
temp.push_back(i);
}
for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it);
}
void bottom_up(int i) {
while (i > 1) {
i >>= 1;
propagate(i << 1 | 0);
propagate(i << 1 | 1);
data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
}
public:
lazy_segment_tree() {}
lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
size_(1 << depth_),
hsize_(size_ / 2),
data_(size_, M_get_()),
lazy_(size_, M_update_()) {}
void update(int l, int r, const value_type_update &x) {
assert(0 <= l and l <= r and r <= hsize_);
propagate_top_down(l + hsize_);
if (r < hsize_) propagate_top_down(r + hsize_);
int L = l + hsize_, R = r + hsize_;
while (L < R) {
if (R & 1) {
--R;
lazy_[R] = M_update_(x, lazy_[R]);
propagate(R);
}
if (L & 1) {
lazy_[L] = M_update_(x, lazy_[L]);
propagate(L);
++L;
}
L >>= 1;
R >>= 1;
}
bottom_up(l + hsize_);
if (r < hsize_) bottom_up(r + hsize_);
}
void update(int i, const value_type_update &x) { update(i, i + 1, x); }
value_type_get fold(int l, int r) {
assert(0 <= l and l <= r and r <= hsize_);
propagate_top_down(l + hsize_);
if (r < hsize_) propagate_top_down(r + hsize_);
value_type_get ret_left = M_get_(), ret_right = M_get_();
int L = l + hsize_, R = r + hsize_;
while (L < R) {
if (R & 1) {
--R;
propagate(R);
ret_right = M_get_(data_[R], ret_right);
}
if (L & 1) {
propagate(L);
ret_left = M_get_(ret_left, data_[L]);
++L;
}
L >>= 1;
R >>= 1;
}
return M_get_(ret_left, ret_right);
}
value_type_get fold_all() {
return fold(0, hsize_);
}
value_type_get operator[](int i) { return fold(i, i + 1); }
template <typename T>
void init(const T &val) {
init_with_vector(std::vector<T>(hsize_, val));
}
template <typename T>
void init_with_vector(const std::vector<T> &val) {
data_.assign(size_, M_get_());
lazy_.assign(size_, M_update_());
for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i];
for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
}
};
} // namespace haar_lib
#line 4 "Mylib/Graph/Template/graph.cpp"
namespace haar_lib {
template <typename T>
struct edge {
int from, to;
T cost;
int index = -1;
edge() {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {}
};
template <typename T>
struct graph {
using weight_type = T;
using edge_type = edge<T>;
std::vector<std::vector<edge<T>>> data;
auto& operator[](size_t i) { return data[i]; }
const auto& operator[](size_t i) const { return data[i]; }
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
graph() {}
graph(int N) : data(N) {}
bool empty() const { return data.empty(); }
int size() const { return data.size(); }
void add_edge(int i, int j, T w, int index = -1) {
data[i].emplace_back(i, j, w, index);
}
void add_undirected(int i, int j, T w, int index = -1) {
add_edge(i, j, w, index);
add_edge(j, i, w, index);
}
template <size_t I, bool DIRECTED = true, bool WEIGHTED = true>
void read(int M) {
for (int i = 0; i < M; ++i) {
int u, v;
std::cin >> u >> v;
u -= I;
v -= I;
T w = 1;
if (WEIGHTED) std::cin >> w;
if (DIRECTED)
add_edge(u, v, w, i);
else
add_undirected(u, v, w, i);
}
}
};
template <typename T>
using tree = graph<T>;
} // namespace haar_lib
#line 2 "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp"
#include <queue>
#line 5 "Mylib/Graph/TreeUtils/euler_tour_bfs.cpp"
namespace haar_lib {
template <typename T>
class euler_tour_bfs {
int N_;
std::vector<int> parent_, depth_, left_, right_;
std::vector<std::vector<int>> bfs_order_, dfs_order_;
public:
euler_tour_bfs() {}
euler_tour_bfs(const tree<T> &tr, int root) : N_(tr.size()), parent_(N_), depth_(N_), left_(N_), right_(N_) {
{
int ord = 0;
dfs(tr, root, -1, 0, ord);
}
{
std::queue<std::pair<int, int>> q;
q.emplace(root, 0);
int ord = 0;
while (not q.empty()) {
auto [i, d] = q.front();
q.pop();
if ((int) bfs_order_.size() <= d) bfs_order_.emplace_back();
bfs_order_[d].push_back(ord);
++ord;
for (auto &e : tr[i]) {
if (e.to == parent_[i]) continue;
q.emplace(e.to, d + 1);
}
}
}
}
private:
void dfs(const tree<T> &tr, int cur, int par, int d, int &ord) {
parent_[cur] = par;
depth_[cur] = d;
if ((int) dfs_order_.size() <= d) dfs_order_.emplace_back();
dfs_order_[d].push_back(ord);
left_[cur] = ord;
++ord;
for (auto &e : tr[cur]) {
if (e.to == par) continue;
dfs(tr, e.to, cur, d + 1, ord);
}
right_[cur] = ord;
}
public:
template <typename Func>
void query_children(int i, int d, const Func &f) const {
if (i != -1) {
d += depth_[i];
if ((int) bfs_order_.size() > d) {
int l = std::lower_bound(dfs_order_[d].begin(), dfs_order_[d].end(), left_[i]) - dfs_order_[d].begin();
int r = std::lower_bound(dfs_order_[d].begin(), dfs_order_[d].end(), right_[i]) - dfs_order_[d].begin();
if (l >= (int) bfs_order_[d].size()) return;
if (r == l) return;
f(bfs_order_[d][l], bfs_order_[d][r - 1] + 1);
}
}
}
template <typename Func>
void query_at(int i, const Func &f) const {
query_children(i, 0, f);
}
int get_parent(int i) const {
if (i == -1) return -1;
return parent_[i];
}
int get_ancestor(int i, int k) const {
int ret = i;
for (int i = 0; i < k; ++i) {
ret = get_parent(ret);
if (ret == -1) break;
}
return ret;
}
};
} // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#include <utility>
#line 6 "Mylib/IO/input_tuple.cpp"
namespace haar_lib {
template <typename T, size_t... I>
static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
(void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
}
template <typename T, typename U>
std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
s >> value.first >> value.second;
return s;
}
template <typename... Args>
std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
return s;
}
} // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"
namespace haar_lib {
template <typename... Args>
class InputTuples {
struct iter {
using value_type = std::tuple<Args...>;
value_type value;
bool fetched = false;
int N, c = 0;
value_type operator*() {
if (not fetched) {
std::cin >> value;
}
return value;
}
void operator++() {
++c;
fetched = false;
}
bool operator!=(iter &) const {
return c < N;
}
iter(int N) : N(N) {}
};
int N;
public:
InputTuples(int N) : N(N) {}
iter begin() const { return iter(N); }
iter end() const { return iter(N); }
};
template <typename... Args>
auto input_tuples(int N) {
return InputTuples<Args...>(N);
}
} // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"
namespace haar_lib {
template <typename T>
std::vector<T> input_vector(int N) {
std::vector<T> ret(N);
for (int i = 0; i < N; ++i) std::cin >> ret[i];
return ret;
}
template <typename T>
std::vector<std::vector<T>> input_vector(int N, int M) {
std::vector<std::vector<T>> ret(N);
for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
return ret;
}
} // namespace haar_lib
#line 12 "test/yukicoder/899/main.test.cpp"
namespace hl = haar_lib;
using update = hl::update_monoid<int64_t>;
using sum = hl::sum_monoid<int64_t>;
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int N;
std::cin >> N;
hl::tree<int> tree(N);
tree.read<0, false, false>(N - 1);
auto res = hl::euler_tour_bfs<int>(tree, 0);
auto A = hl::input_vector<int64_t>(N);
hl::lazy_segment_tree<hl::update_sum<update, sum>> seg(N);
for (int i = 0; i < N; ++i) {
res.query_at(i, [&](int l, int r) { seg.update(l, r, A[i]); });
}
int Q;
std::cin >> Q;
for (auto [x] : hl::input_tuples<int>(Q)) {
int64_t ans = 0;
auto f =
[&](int l, int r) {
ans += seg.fold(l, r);
seg.update(l, r, 0);
};
// 親の親
res.query_at(res.get_ancestor(x, 2), f);
// 親
res.query_at(res.get_ancestor(x, 1), f);
// 親の子
res.query_children(res.get_parent(x), 1, f);
// 自分
res.query_at(x, f);
// 子
res.query_children(x, 1, f);
// 子の子
res.query_children(x, 2, f);
res.query_at(
x,
[&](int l, int r) {
seg.update(l, r, ans);
});
std::cout << ans << std::endl;
}
return 0;
}