#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3035" #include <algorithm> #include <climits> #include <iostream> #include <map> #include "Mylib/AlgebraicStructure/Monoid/max.cpp" #include "Mylib/AlgebraicStructure/Monoid/min.cpp" #include "Mylib/AlgebraicStructure/Monoid/sum.cpp" #include "Mylib/AlgebraicStructure/Monoid/with_count.cpp" #include "Mylib/AlgebraicStructure/MonoidAction/add_max_with_count.cpp" #include "Mylib/AlgebraicStructure/MonoidAction/add_min_with_count.cpp" #include "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/IO/input_vector.cpp" namespace hl = haar_lib; using sum = hl::sum_monoid<int64_t>; using max_with_count = hl::with_count<hl::max_monoid<int64_t>>; using min_with_count = hl::with_count<hl::min_monoid<int64_t>>; using add_max_with_count = hl::add_max_with_count<sum, max_with_count>; using add_min_with_count = hl::add_min_with_count<sum, min_with_count>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int H, W, Q; std::cin >> H >> W >> Q; auto A = hl::input_vector<int64_t>(H); auto B = hl::input_vector<int64_t>(W); auto seg_h_max = hl::lazy_segment_tree<add_max_with_count>(H); auto seg_h_min = hl::lazy_segment_tree<add_min_with_count>(H); auto seg_w_max = hl::lazy_segment_tree<add_max_with_count>(W); auto seg_w_min = hl::lazy_segment_tree<add_min_with_count>(W); seg_h_max.init_with_vector(A); seg_h_min.init_with_vector(A); seg_w_max.init_with_vector(B); seg_w_min.init_with_vector(B); for (auto [type] : hl::input_tuples<int>(Q)) { switch (type) { case 1: { int a, b, v; std::cin >> a >> b >> v; --a; seg_h_max.update(a, b, v); seg_h_min.update(a, b, v); break; } case 2: { int c, d, v; std::cin >> c >> d >> v; --c; seg_w_max.update(c, d, v); seg_w_min.update(c, d, v); break; } case 3: { int64_t a, b, c, d; std::cin >> a >> b >> c >> d; --a, --c; std::map<int64_t, int64_t> m; auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)}; auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)}; if (x[0].value == x[1].value) x.pop_back(); if (y[0].value == y[1].value) y.pop_back(); int64_t M = LLONG_MAX; for (auto p : x) { for (auto q : y) { M = std::min(M, *p.value * *q.value); } } if (M == 0) { int64_t p = 0; for (auto e : x) if (e.value == 0) p += e.count; int64_t q = 0; for (auto e : y) if (e.value == 0) q += e.count; m[0] = (b - a) * q + (d - c) * p - p * q; } else { for (auto p : x) { for (auto q : y) { m[*p.value * *q.value] += p.count * q.count; } } } std::cout << m.begin()->first << " " << m.begin()->second << "\n"; break; } case 4: { int64_t a, b, c, d; std::cin >> a >> b >> c >> d; --a, --c; std::map<int64_t, int64_t> m; auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)}; auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)}; if (x[0].value == x[1].value) x.pop_back(); if (y[0].value == y[1].value) y.pop_back(); int64_t M = LLONG_MIN; for (auto p : x) { for (auto q : y) { M = std::max(M, *p.value * *q.value); } } if (M == 0) { int64_t p = 0; for (auto e : x) if (e.value == 0) p += e.count; int64_t q = 0; for (auto e : y) if (e.value == 0) q += e.count; m[0] = (b - a) * q + (d - c) * p - p * q; } else { for (auto p : x) { for (auto q : y) { m[*p.value * *q.value] += p.count * q.count; } } } std::cout << m.rbegin()->first << " " << m.rbegin()->second << "\n"; break; } } } return 0; }
#line 1 "test/aoj/3035/main.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3035" #include <algorithm> #include <climits> #include <iostream> #include <map> #line 3 "Mylib/AlgebraicStructure/Monoid/max.cpp" #include <optional> namespace haar_lib { template <typename T> struct max_monoid { using value_type = std::optional<T>; value_type operator()() const { return {}; } value_type operator()(const value_type &a, const value_type &b) const { if (not a) return b; if (not b) return a; return {std::max(*a, *b)}; } }; } // namespace haar_lib #line 4 "Mylib/AlgebraicStructure/Monoid/min.cpp" namespace haar_lib { template <typename T> struct min_monoid { using value_type = std::optional<T>; value_type operator()() const { return {}; } value_type operator()(const value_type &a, const value_type &b) const { if (not a) return b; if (not b) return a; return {std::min(*a, *b)}; } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp" namespace haar_lib { template <typename T> struct sum_monoid { using value_type = T; value_type operator()() const { return 0; } value_type operator()(value_type a, value_type b) const { return a + b; } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/Monoid/with_count.cpp" #include <cstdint> #include <utility> namespace haar_lib { namespace with_count_impl { template <typename T> struct internal_value { T value; int64_t count; internal_value() : value(T()), count(0) {} internal_value(T value) : value(value), count(1) {} internal_value(T value, int64_t count) : value(value), count(count) {} }; } // namespace with_count_impl template <typename Monoid> struct with_count { using value_type = with_count_impl::internal_value<typename Monoid::value_type>; const static Monoid M; value_type operator()() const { return {M(), 0}; } value_type operator()(const value_type &a, const value_type &b) const { if (a.value == b.value) return {a.value, a.count + b.count}; if (M(a.value, b.value) == a.value) return a; return b; } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/MonoidAction/add_max_with_count.cpp" namespace haar_lib { template <typename MonoidUpdate, typename MonoidGet> struct add_max_with_count { using monoid_get = MonoidGet; using monoid_update = MonoidUpdate; using value_type_get = typename MonoidGet::value_type; using value_type_update = typename MonoidUpdate::value_type; value_type_get operator()(const value_type_get &a, const value_type_update &b, int) const { return {a.value ? a.value.value() + b : a.value, a.count}; } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/MonoidAction/add_min_with_count.cpp" namespace haar_lib { template <typename MonoidUpdate, typename MonoidGet> struct add_min_with_count { using monoid_get = MonoidGet; using monoid_update = MonoidUpdate; using value_type_get = typename MonoidGet::value_type; using value_type_update = typename MonoidUpdate::value_type; value_type_get operator()(const value_type_get &a, const value_type_update &b, int) const { return {a.value ? a.value.value() + b : a.value, a.count}; } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include <cassert> #include <vector> namespace haar_lib { template <typename Monoid> class lazy_segment_tree { public: using monoid_get = typename Monoid::monoid_get; using monoid_update = typename Monoid::monoid_update; using value_type_get = typename monoid_get::value_type; using value_type_update = typename monoid_update::value_type; private: Monoid M_; monoid_get M_get_; monoid_update M_update_; int depth_, size_, hsize_; std::vector<value_type_get> data_; std::vector<value_type_update> lazy_; void propagate(int i) { if (lazy_[i] == M_update_()) return; if (i < hsize_) { lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]); lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]); } const int len = hsize_ >> (31 - __builtin_clz(i)); data_[i] = M_(data_[i], lazy_[i], len); lazy_[i] = M_update_(); } void propagate_top_down(int i) { std::vector<int> temp; while (i > 1) { i >>= 1; temp.push_back(i); } for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it); } void bottom_up(int i) { while (i > 1) { i >>= 1; propagate(i << 1 | 0); propagate(i << 1 | 1); data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } } public: lazy_segment_tree() {} lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_get_()), lazy_(size_, M_update_()) {} void update(int l, int r, const value_type_update &x) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; lazy_[R] = M_update_(x, lazy_[R]); propagate(R); } if (L & 1) { lazy_[L] = M_update_(x, lazy_[L]); propagate(L); ++L; } L >>= 1; R >>= 1; } bottom_up(l + hsize_); if (r < hsize_) bottom_up(r + hsize_); } void update(int i, const value_type_update &x) { update(i, i + 1, x); } value_type_get fold(int l, int r) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); value_type_get ret_left = M_get_(), ret_right = M_get_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; propagate(R); ret_right = M_get_(data_[R], ret_right); } if (L & 1) { propagate(L); ret_left = M_get_(ret_left, data_[L]); ++L; } L >>= 1; R >>= 1; } return M_get_(ret_left, ret_right); } value_type_get fold_all() { return fold(0, hsize_); } value_type_get operator[](int i) { return fold(i, i + 1); } template <typename T> void init(const T &val) { init_with_vector(std::vector<T>(hsize_, val)); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_get_()); lazy_.assign(size_, M_update_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i]; for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 4 "Mylib/IO/input_vector.cpp" namespace haar_lib { template <typename T> std::vector<T> input_vector(int N) { std::vector<T> ret(N); for (int i = 0; i < N; ++i) std::cin >> ret[i]; return ret; } template <typename T> std::vector<std::vector<T>> input_vector(int N, int M) { std::vector<std::vector<T>> ret(N); for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M); return ret; } } // namespace haar_lib #line 16 "test/aoj/3035/main.test.cpp" namespace hl = haar_lib; using sum = hl::sum_monoid<int64_t>; using max_with_count = hl::with_count<hl::max_monoid<int64_t>>; using min_with_count = hl::with_count<hl::min_monoid<int64_t>>; using add_max_with_count = hl::add_max_with_count<sum, max_with_count>; using add_min_with_count = hl::add_min_with_count<sum, min_with_count>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int H, W, Q; std::cin >> H >> W >> Q; auto A = hl::input_vector<int64_t>(H); auto B = hl::input_vector<int64_t>(W); auto seg_h_max = hl::lazy_segment_tree<add_max_with_count>(H); auto seg_h_min = hl::lazy_segment_tree<add_min_with_count>(H); auto seg_w_max = hl::lazy_segment_tree<add_max_with_count>(W); auto seg_w_min = hl::lazy_segment_tree<add_min_with_count>(W); seg_h_max.init_with_vector(A); seg_h_min.init_with_vector(A); seg_w_max.init_with_vector(B); seg_w_min.init_with_vector(B); for (auto [type] : hl::input_tuples<int>(Q)) { switch (type) { case 1: { int a, b, v; std::cin >> a >> b >> v; --a; seg_h_max.update(a, b, v); seg_h_min.update(a, b, v); break; } case 2: { int c, d, v; std::cin >> c >> d >> v; --c; seg_w_max.update(c, d, v); seg_w_min.update(c, d, v); break; } case 3: { int64_t a, b, c, d; std::cin >> a >> b >> c >> d; --a, --c; std::map<int64_t, int64_t> m; auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)}; auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)}; if (x[0].value == x[1].value) x.pop_back(); if (y[0].value == y[1].value) y.pop_back(); int64_t M = LLONG_MAX; for (auto p : x) { for (auto q : y) { M = std::min(M, *p.value * *q.value); } } if (M == 0) { int64_t p = 0; for (auto e : x) if (e.value == 0) p += e.count; int64_t q = 0; for (auto e : y) if (e.value == 0) q += e.count; m[0] = (b - a) * q + (d - c) * p - p * q; } else { for (auto p : x) { for (auto q : y) { m[*p.value * *q.value] += p.count * q.count; } } } std::cout << m.begin()->first << " " << m.begin()->second << "\n"; break; } case 4: { int64_t a, b, c, d; std::cin >> a >> b >> c >> d; --a, --c; std::map<int64_t, int64_t> m; auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)}; auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)}; if (x[0].value == x[1].value) x.pop_back(); if (y[0].value == y[1].value) y.pop_back(); int64_t M = LLONG_MIN; for (auto p : x) { for (auto q : y) { M = std::max(M, *p.value * *q.value); } } if (M == 0) { int64_t p = 0; for (auto e : x) if (e.value == 0) p += e.count; int64_t q = 0; for (auto e : y) if (e.value == 0) q += e.count; m[0] = (b - a) * q + (d - c) * p - p * q; } else { for (auto p : x) { for (auto q : y) { m[*p.value * *q.value] += p.count * q.count; } } } std::cout << m.rbegin()->first << " " << m.rbegin()->second << "\n"; break; } } } return 0; }