kyopro-lib

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: test/aoj/3035/main.test.cpp

Depends on

Code

#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3035"

#include <algorithm>
#include <climits>
#include <iostream>
#include <map>
#include "Mylib/AlgebraicStructure/Monoid/max.cpp"
#include "Mylib/AlgebraicStructure/Monoid/min.cpp"
#include "Mylib/AlgebraicStructure/Monoid/sum.cpp"
#include "Mylib/AlgebraicStructure/Monoid/with_count.cpp"
#include "Mylib/AlgebraicStructure/MonoidAction/add_max_with_count.cpp"
#include "Mylib/AlgebraicStructure/MonoidAction/add_min_with_count.cpp"
#include "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp"
#include "Mylib/IO/input_tuples.cpp"
#include "Mylib/IO/input_vector.cpp"

namespace hl = haar_lib;

using sum                = hl::sum_monoid<int64_t>;
using max_with_count     = hl::with_count<hl::max_monoid<int64_t>>;
using min_with_count     = hl::with_count<hl::min_monoid<int64_t>>;
using add_max_with_count = hl::add_max_with_count<sum, max_with_count>;
using add_min_with_count = hl::add_min_with_count<sum, min_with_count>;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int H, W, Q;
  std::cin >> H >> W >> Q;
  auto A = hl::input_vector<int64_t>(H);
  auto B = hl::input_vector<int64_t>(W);

  auto seg_h_max = hl::lazy_segment_tree<add_max_with_count>(H);
  auto seg_h_min = hl::lazy_segment_tree<add_min_with_count>(H);
  auto seg_w_max = hl::lazy_segment_tree<add_max_with_count>(W);
  auto seg_w_min = hl::lazy_segment_tree<add_min_with_count>(W);

  seg_h_max.init_with_vector(A);
  seg_h_min.init_with_vector(A);
  seg_w_max.init_with_vector(B);
  seg_w_min.init_with_vector(B);

  for (auto [type] : hl::input_tuples<int>(Q)) {
    switch (type) {
      case 1: {
        int a, b, v;
        std::cin >> a >> b >> v;
        --a;
        seg_h_max.update(a, b, v);
        seg_h_min.update(a, b, v);
        break;
      }

      case 2: {
        int c, d, v;
        std::cin >> c >> d >> v;
        --c;
        seg_w_max.update(c, d, v);
        seg_w_min.update(c, d, v);
        break;
      }

      case 3: {
        int64_t a, b, c, d;
        std::cin >> a >> b >> c >> d;
        --a, --c;

        std::map<int64_t, int64_t> m;

        auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)};
        auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)};

        if (x[0].value == x[1].value) x.pop_back();
        if (y[0].value == y[1].value) y.pop_back();

        int64_t M = LLONG_MAX;
        for (auto p : x) {
          for (auto q : y) {
            M = std::min(M, *p.value * *q.value);
          }
        }

        if (M == 0) {
          int64_t p = 0;
          for (auto e : x)
            if (e.value == 0) p += e.count;
          int64_t q = 0;
          for (auto e : y)
            if (e.value == 0) q += e.count;
          m[0] = (b - a) * q + (d - c) * p - p * q;
        } else {
          for (auto p : x) {
            for (auto q : y) {
              m[*p.value * *q.value] += p.count * q.count;
            }
          }
        }

        std::cout << m.begin()->first << " " << m.begin()->second << "\n";

        break;
      }

      case 4: {
        int64_t a, b, c, d;
        std::cin >> a >> b >> c >> d;
        --a, --c;

        std::map<int64_t, int64_t> m;

        auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)};
        auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)};

        if (x[0].value == x[1].value) x.pop_back();
        if (y[0].value == y[1].value) y.pop_back();

        int64_t M = LLONG_MIN;
        for (auto p : x) {
          for (auto q : y) {
            M = std::max(M, *p.value * *q.value);
          }
        }

        if (M == 0) {
          int64_t p = 0;
          for (auto e : x)
            if (e.value == 0) p += e.count;
          int64_t q = 0;
          for (auto e : y)
            if (e.value == 0) q += e.count;
          m[0] = (b - a) * q + (d - c) * p - p * q;
        } else {
          for (auto p : x) {
            for (auto q : y) {
              m[*p.value * *q.value] += p.count * q.count;
            }
          }
        }

        std::cout << m.rbegin()->first << " " << m.rbegin()->second << "\n";

        break;
      }
    }
  }

  return 0;
}
#line 1 "test/aoj/3035/main.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3035"

#include <algorithm>
#include <climits>
#include <iostream>
#include <map>
#line 3 "Mylib/AlgebraicStructure/Monoid/max.cpp"
#include <optional>

namespace haar_lib {
  template <typename T>
  struct max_monoid {
    using value_type = std::optional<T>;

    value_type operator()() const { return {}; }
    value_type operator()(const value_type &a, const value_type &b) const {
      if (not a) return b;
      if (not b) return a;
      return {std::max(*a, *b)};
    }
  };
}  // namespace haar_lib
#line 4 "Mylib/AlgebraicStructure/Monoid/min.cpp"

namespace haar_lib {
  template <typename T>
  struct min_monoid {
    using value_type = std::optional<T>;

    value_type operator()() const { return {}; }
    value_type operator()(const value_type &a, const value_type &b) const {
      if (not a) return b;
      if (not b) return a;
      return {std::min(*a, *b)};
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp"

namespace haar_lib {
  template <typename T>
  struct sum_monoid {
    using value_type = T;
    value_type operator()() const { return 0; }
    value_type operator()(value_type a, value_type b) const { return a + b; }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/Monoid/with_count.cpp"
#include <cstdint>
#include <utility>

namespace haar_lib {
  namespace with_count_impl {
    template <typename T>
    struct internal_value {
      T value;
      int64_t count;
      internal_value() : value(T()), count(0) {}
      internal_value(T value) : value(value), count(1) {}
      internal_value(T value, int64_t count) : value(value), count(count) {}
    };
  }  // namespace with_count_impl

  template <typename Monoid>
  struct with_count {
    using value_type = with_count_impl::internal_value<typename Monoid::value_type>;
    const static Monoid M;

    value_type operator()() const {
      return {M(), 0};
    }

    value_type operator()(const value_type &a, const value_type &b) const {
      if (a.value == b.value) return {a.value, a.count + b.count};
      if (M(a.value, b.value) == a.value) return a;
      return b;
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/MonoidAction/add_max_with_count.cpp"

namespace haar_lib {
  template <typename MonoidUpdate, typename MonoidGet>
  struct add_max_with_count {
    using monoid_get        = MonoidGet;
    using monoid_update     = MonoidUpdate;
    using value_type_get    = typename MonoidGet::value_type;
    using value_type_update = typename MonoidUpdate::value_type;

    value_type_get operator()(const value_type_get &a, const value_type_update &b, int) const {
      return {a.value ? a.value.value() + b : a.value, a.count};
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/AlgebraicStructure/MonoidAction/add_min_with_count.cpp"

namespace haar_lib {
  template <typename MonoidUpdate, typename MonoidGet>
  struct add_min_with_count {
    using monoid_get        = MonoidGet;
    using monoid_update     = MonoidUpdate;
    using value_type_get    = typename MonoidGet::value_type;
    using value_type_update = typename MonoidUpdate::value_type;

    value_type_get operator()(const value_type_get &a, const value_type_update &b, int) const {
      return {a.value ? a.value.value() + b : a.value, a.count};
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp"
#include <cassert>
#include <vector>

namespace haar_lib {
  template <typename Monoid>
  class lazy_segment_tree {
  public:
    using monoid_get        = typename Monoid::monoid_get;
    using monoid_update     = typename Monoid::monoid_update;
    using value_type_get    = typename monoid_get::value_type;
    using value_type_update = typename monoid_update::value_type;

  private:
    Monoid M_;
    monoid_get M_get_;
    monoid_update M_update_;

    int depth_, size_, hsize_;
    std::vector<value_type_get> data_;
    std::vector<value_type_update> lazy_;

    void propagate(int i) {
      if (lazy_[i] == M_update_()) return;
      if (i < hsize_) {
        lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]);
        lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]);
      }
      const int len = hsize_ >> (31 - __builtin_clz(i));
      data_[i]      = M_(data_[i], lazy_[i], len);
      lazy_[i]      = M_update_();
    }

    void propagate_top_down(int i) {
      std::vector<int> temp;
      while (i > 1) {
        i >>= 1;
        temp.push_back(i);
      }

      for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it);
    }

    void bottom_up(int i) {
      while (i > 1) {
        i >>= 1;
        propagate(i << 1 | 0);
        propagate(i << 1 | 1);
        data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
      }
    }

  public:
    lazy_segment_tree() {}
    lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1),
                               size_(1 << depth_),
                               hsize_(size_ / 2),
                               data_(size_, M_get_()),
                               lazy_(size_, M_update_()) {}

    void update(int l, int r, const value_type_update &x) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          lazy_[R] = M_update_(x, lazy_[R]);
          propagate(R);
        }
        if (L & 1) {
          lazy_[L] = M_update_(x, lazy_[L]);
          propagate(L);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      bottom_up(l + hsize_);
      if (r < hsize_) bottom_up(r + hsize_);
    }

    void update(int i, const value_type_update &x) { update(i, i + 1, x); }

    value_type_get fold(int l, int r) {
      assert(0 <= l and l <= r and r <= hsize_);
      propagate_top_down(l + hsize_);
      if (r < hsize_) propagate_top_down(r + hsize_);

      value_type_get ret_left = M_get_(), ret_right = M_get_();

      int L = l + hsize_, R = r + hsize_;

      while (L < R) {
        if (R & 1) {
          --R;
          propagate(R);
          ret_right = M_get_(data_[R], ret_right);
        }
        if (L & 1) {
          propagate(L);
          ret_left = M_get_(ret_left, data_[L]);
          ++L;
        }
        L >>= 1;
        R >>= 1;
      }

      return M_get_(ret_left, ret_right);
    }

    value_type_get fold_all() {
      return fold(0, hsize_);
    }

    value_type_get operator[](int i) { return fold(i, i + 1); }

    template <typename T>
    void init(const T &val) {
      init_with_vector(std::vector<T>(hsize_, val));
    }

    template <typename T>
    void init_with_vector(const std::vector<T> &val) {
      data_.assign(size_, M_get_());
      lazy_.assign(size_, M_update_());
      for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i];
      for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]);
    }
  };
}  // namespace haar_lib
#line 2 "Mylib/IO/input_tuples.cpp"
#include <initializer_list>
#line 4 "Mylib/IO/input_tuples.cpp"
#include <tuple>
#line 6 "Mylib/IO/input_tuple.cpp"

namespace haar_lib {
  template <typename T, size_t... I>
  static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) {
    (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...};
  }

  template <typename T, typename U>
  std::istream &operator>>(std::istream &s, std::pair<T, U> &value) {
    s >> value.first >> value.second;
    return s;
  }

  template <typename... Args>
  std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) {
    input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>());
    return s;
  }
}  // namespace haar_lib
#line 8 "Mylib/IO/input_tuples.cpp"

namespace haar_lib {
  template <typename... Args>
  class InputTuples {
    struct iter {
      using value_type = std::tuple<Args...>;
      value_type value;
      bool fetched = false;
      int N, c = 0;

      value_type operator*() {
        if (not fetched) {
          std::cin >> value;
        }
        return value;
      }

      void operator++() {
        ++c;
        fetched = false;
      }

      bool operator!=(iter &) const {
        return c < N;
      }

      iter(int N) : N(N) {}
    };

    int N;

  public:
    InputTuples(int N) : N(N) {}

    iter begin() const { return iter(N); }
    iter end() const { return iter(N); }
  };

  template <typename... Args>
  auto input_tuples(int N) {
    return InputTuples<Args...>(N);
  }
}  // namespace haar_lib
#line 4 "Mylib/IO/input_vector.cpp"

namespace haar_lib {
  template <typename T>
  std::vector<T> input_vector(int N) {
    std::vector<T> ret(N);
    for (int i = 0; i < N; ++i) std::cin >> ret[i];
    return ret;
  }

  template <typename T>
  std::vector<std::vector<T>> input_vector(int N, int M) {
    std::vector<std::vector<T>> ret(N);
    for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
    return ret;
  }
}  // namespace haar_lib
#line 16 "test/aoj/3035/main.test.cpp"

namespace hl = haar_lib;

using sum                = hl::sum_monoid<int64_t>;
using max_with_count     = hl::with_count<hl::max_monoid<int64_t>>;
using min_with_count     = hl::with_count<hl::min_monoid<int64_t>>;
using add_max_with_count = hl::add_max_with_count<sum, max_with_count>;
using add_min_with_count = hl::add_min_with_count<sum, min_with_count>;

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(false);

  int H, W, Q;
  std::cin >> H >> W >> Q;
  auto A = hl::input_vector<int64_t>(H);
  auto B = hl::input_vector<int64_t>(W);

  auto seg_h_max = hl::lazy_segment_tree<add_max_with_count>(H);
  auto seg_h_min = hl::lazy_segment_tree<add_min_with_count>(H);
  auto seg_w_max = hl::lazy_segment_tree<add_max_with_count>(W);
  auto seg_w_min = hl::lazy_segment_tree<add_min_with_count>(W);

  seg_h_max.init_with_vector(A);
  seg_h_min.init_with_vector(A);
  seg_w_max.init_with_vector(B);
  seg_w_min.init_with_vector(B);

  for (auto [type] : hl::input_tuples<int>(Q)) {
    switch (type) {
      case 1: {
        int a, b, v;
        std::cin >> a >> b >> v;
        --a;
        seg_h_max.update(a, b, v);
        seg_h_min.update(a, b, v);
        break;
      }

      case 2: {
        int c, d, v;
        std::cin >> c >> d >> v;
        --c;
        seg_w_max.update(c, d, v);
        seg_w_min.update(c, d, v);
        break;
      }

      case 3: {
        int64_t a, b, c, d;
        std::cin >> a >> b >> c >> d;
        --a, --c;

        std::map<int64_t, int64_t> m;

        auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)};
        auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)};

        if (x[0].value == x[1].value) x.pop_back();
        if (y[0].value == y[1].value) y.pop_back();

        int64_t M = LLONG_MAX;
        for (auto p : x) {
          for (auto q : y) {
            M = std::min(M, *p.value * *q.value);
          }
        }

        if (M == 0) {
          int64_t p = 0;
          for (auto e : x)
            if (e.value == 0) p += e.count;
          int64_t q = 0;
          for (auto e : y)
            if (e.value == 0) q += e.count;
          m[0] = (b - a) * q + (d - c) * p - p * q;
        } else {
          for (auto p : x) {
            for (auto q : y) {
              m[*p.value * *q.value] += p.count * q.count;
            }
          }
        }

        std::cout << m.begin()->first << " " << m.begin()->second << "\n";

        break;
      }

      case 4: {
        int64_t a, b, c, d;
        std::cin >> a >> b >> c >> d;
        --a, --c;

        std::map<int64_t, int64_t> m;

        auto x = std::vector{seg_h_max.fold(a, b), seg_h_min.fold(a, b)};
        auto y = std::vector{seg_w_max.fold(c, d), seg_w_min.fold(c, d)};

        if (x[0].value == x[1].value) x.pop_back();
        if (y[0].value == y[1].value) y.pop_back();

        int64_t M = LLONG_MIN;
        for (auto p : x) {
          for (auto q : y) {
            M = std::max(M, *p.value * *q.value);
          }
        }

        if (M == 0) {
          int64_t p = 0;
          for (auto e : x)
            if (e.value == 0) p += e.count;
          int64_t q = 0;
          for (auto e : y)
            if (e.value == 0) q += e.count;
          m[0] = (b - a) * q + (d - c) * p - p * q;
        } else {
          for (auto p : x) {
            for (auto q : y) {
              m[*p.value * *q.value] += p.count * q.count;
            }
          }
        }

        std::cout << m.rbegin()->first << " " << m.rbegin()->second << "\n";

        break;
      }
    }
  }

  return 0;
}
Back to top page